Answer
Verified
454.8k+ views
Hint-The vector sum of linear momentum of all the bodies of the system is maintained in an isolated system according to the law of momentum conservation and is not affected due to their reciprocal action or reaction. A device with no external force operating on it means an independent system.
Complete step by step answer:
There are no particles present in the system in gravity-free space. There is, therefore, no force acting on the iron man. The center of mass remains the same for a system if there are no external forces on the system, that is internal forces do not change the system's center of mass.
Therefore, net change in center of mass =0.
Given, in a gravity free space, a man of mass $M$ standing at a height $h$ from the ground and releasing a stone of mass $m$ downwards with velocity $u$, after the release a man is moving little upward with velocity $V$, because of gravity free space.
From the law of conservation of momentum,
$ \Rightarrow MV - mu = 0$
$ \Rightarrow V = \dfrac{{mu}}{M}$ ………………(1)
Here, $M$ is the mass of the iron man
$m$ is the mass of the stone.
$u$ is the velocity of stone
$V$ is the velocity of man.
Now, time taken by the stone to reach floor is given by,
$ \Rightarrow {t_{stone}} = \dfrac{d}{v} = \dfrac{h}{u}$ ………………..(2)
In that time, height reached by the iron man of mass m is given by,${t_{man}} = \dfrac{{{h'}}}{V}$ ………………….(3)
From equation (1) and (2), time taken in each case is the same during the upward and downward motion.
$ \Rightarrow {t_{stone}} = {t_{man}}$
$ \Rightarrow \dfrac{h}{u} = \dfrac{{{h'}}}{V}$
From above equation we get,
The height reached by the man after release of stone from height his given by,
$ \Rightarrow {h'} = \dfrac{h}{u}V$
From equation (1) we have,
$ \Rightarrow V = \dfrac{{mu}}{M}$
Substitute in above equation we get,
$ \Rightarrow {h'} = \dfrac{h}{u}\left( {\dfrac{{mu}}{M}} \right)$
$ \Rightarrow \dfrac{{mh}}{M}$
Total height from the floor is given by,
$ \Rightarrow H = h + {h'}$
$\therefore H = h + \dfrac{{mh}}{M}$
This is the distance of iron man above the floor.
therefore Correct option is (D).
Note:
-Momentum is a property of a moving body, which is a product of mass and velocity.
-The law of conservation of linear momentum is universal that as it applies to both, microscopic as well as macroscopic systems.
Complete step by step answer:
There are no particles present in the system in gravity-free space. There is, therefore, no force acting on the iron man. The center of mass remains the same for a system if there are no external forces on the system, that is internal forces do not change the system's center of mass.
Therefore, net change in center of mass =0.
Given, in a gravity free space, a man of mass $M$ standing at a height $h$ from the ground and releasing a stone of mass $m$ downwards with velocity $u$, after the release a man is moving little upward with velocity $V$, because of gravity free space.
From the law of conservation of momentum,
$ \Rightarrow MV - mu = 0$
$ \Rightarrow V = \dfrac{{mu}}{M}$ ………………(1)
Here, $M$ is the mass of the iron man
$m$ is the mass of the stone.
$u$ is the velocity of stone
$V$ is the velocity of man.
Now, time taken by the stone to reach floor is given by,
$ \Rightarrow {t_{stone}} = \dfrac{d}{v} = \dfrac{h}{u}$ ………………..(2)
In that time, height reached by the iron man of mass m is given by,${t_{man}} = \dfrac{{{h'}}}{V}$ ………………….(3)
From equation (1) and (2), time taken in each case is the same during the upward and downward motion.
$ \Rightarrow {t_{stone}} = {t_{man}}$
$ \Rightarrow \dfrac{h}{u} = \dfrac{{{h'}}}{V}$
From above equation we get,
The height reached by the man after release of stone from height his given by,
$ \Rightarrow {h'} = \dfrac{h}{u}V$
From equation (1) we have,
$ \Rightarrow V = \dfrac{{mu}}{M}$
Substitute in above equation we get,
$ \Rightarrow {h'} = \dfrac{h}{u}\left( {\dfrac{{mu}}{M}} \right)$
$ \Rightarrow \dfrac{{mh}}{M}$
Total height from the floor is given by,
$ \Rightarrow H = h + {h'}$
$\therefore H = h + \dfrac{{mh}}{M}$
This is the distance of iron man above the floor.
therefore Correct option is (D).
Note:
-Momentum is a property of a moving body, which is a product of mass and velocity.
-The law of conservation of linear momentum is universal that as it applies to both, microscopic as well as macroscopic systems.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE