
In a $\Delta ABC$, if ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$ , then the triangle is
A. Equilateral
B. Right-angled and isosceles
C. Right angled and not isosceles
D. None of the above
Answer
593.1k+ views
Hint: We have to see whether the triangle is of which type. So use ${{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos
A$, ${{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B$ ,${{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C$and compare it with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$. You will get the answer.
Complete step by step solution:
In $\Delta ABC$, we have given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
But we know that in $\Delta ABC$,
$\begin{align}
& {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\
& {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\
& {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\
\end{align}$
Now adding above three equations we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos
B+{{a}^{2}}+{{b}^{2}}-2ab\cos C$
Simplifying we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C$
Now in question we are given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
So comparing we get,
$2\cos A=0$ , $\cos B=\dfrac{1}{2}$ and $\cos C=\dfrac{\sqrt{3}}{2}$.
$\cos A=\cos \dfrac{\pi }{2}$, $\cos B=\cos \dfrac{\pi }{3}$ and $\cos C=\cos \dfrac{\pi }{6}$.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).
Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.
A$, ${{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B$ ,${{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C$and compare it with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$. You will get the answer.
Complete step by step solution:
In $\Delta ABC$, we have given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
But we know that in $\Delta ABC$,
$\begin{align}
& {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\
& {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\
& {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\
\end{align}$
Now adding above three equations we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos
B+{{a}^{2}}+{{b}^{2}}-2ab\cos C$
Simplifying we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C$
Now in question we are given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
So comparing we get,
$2\cos A=0$ , $\cos B=\dfrac{1}{2}$ and $\cos C=\dfrac{\sqrt{3}}{2}$.
$\cos A=\cos \dfrac{\pi }{2}$, $\cos B=\cos \dfrac{\pi }{3}$ and $\cos C=\cos \dfrac{\pi }{6}$.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).
Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

