
In a $\Delta ABC$, if ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$ , then the triangle is
A. Equilateral
B. Right-angled and isosceles
C. Right angled and not isosceles
D. None of the above
Answer
602.1k+ views
Hint: We have to see whether the triangle is of which type. So use ${{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos
A$, ${{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B$ ,${{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C$and compare it with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$. You will get the answer.
Complete step by step solution:
In $\Delta ABC$, we have given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
But we know that in $\Delta ABC$,
$\begin{align}
& {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\
& {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\
& {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\
\end{align}$
Now adding above three equations we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos
B+{{a}^{2}}+{{b}^{2}}-2ab\cos C$
Simplifying we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C$
Now in question we are given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
So comparing we get,
$2\cos A=0$ , $\cos B=\dfrac{1}{2}$ and $\cos C=\dfrac{\sqrt{3}}{2}$.
$\cos A=\cos \dfrac{\pi }{2}$, $\cos B=\cos \dfrac{\pi }{3}$ and $\cos C=\cos \dfrac{\pi }{6}$.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).
Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.
A$, ${{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B$ ,${{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C$and compare it with ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$. You will get the answer.
Complete step by step solution:
In $\Delta ABC$, we have given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
But we know that in $\Delta ABC$,
$\begin{align}
& {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A \\
& {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2ac\cos B \\
& {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C \\
\end{align}$
Now adding above three equations we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{b}^{2}}+{{c}^{2}}-2bc\cos A+{{a}^{2}}+{{c}^{2}}-2ac\cos
B+{{a}^{2}}+{{b}^{2}}-2ab\cos C$
Simplifying we get,
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=2bc\cos A+2ac\cos B+2ab\cos C$
Now in question we are given ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=ac+\sqrt{3}ab$.
So comparing we get,
$2\cos A=0$ , $\cos B=\dfrac{1}{2}$ and $\cos C=\dfrac{\sqrt{3}}{2}$.
$\cos A=\cos \dfrac{\pi }{2}$, $\cos B=\cos \dfrac{\pi }{3}$ and $\cos C=\cos \dfrac{\pi }{6}$.
So from above we get that the triangle is a right angled triangle and not isosceles.
The correct answer is option (C).
Note: Read the question carefully. Also, you must know the concept regarding all types of triangles.
Also, take care while comparing. Do not miss any term while subtracting. Take care that no terms are
missing.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Pongal Bird Count 2020?

Polymerization of Ethylene?

PM of India in 1977?

Plateau of Tibet?

Planning Commission was founded in?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

