In a college, 70 % students pass in physics, 75 % pass in mathematics and 10 % students fail in both. One student is chosen at random. What is the probability that the student passes in mathematics given that he passes in physics?
Last updated date: 14th Mar 2023
•
Total views: 302.7k
•
Views today: 3.82k
Answer
302.7k+ views
Hint: Let us denote P be the event that the student passes in physics and let us denote the M be the event that the student passes in mathematics. The probability that the student passes in mathematics given that he passes in physics is given by the formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)}$. Using this formula, we can solve this question.
Complete step by step solution:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
If we are given two events A and B, then the probability of event A given that event B will also occur is given by the formula,
$P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$ . . . . . . . . . . . . . (1)
Also, in probability, we have a formula $P\left( A\cap B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cup B \right)$ . . . . . . . . . (2)
For this question, let us denote P be the event that the student passes in physics and let us denote the M be the event that the student passes in mathematics.
It is given that 70 % students pass in physics, so, $P\left( P \right)=\dfrac{70}{100}$.
$\Rightarrow P\left( M \right)=\dfrac{7}{10}$
It is given that 75 % students pass in mathematics, so, $P\left( M \right)=\dfrac{75}{100}$.
$\Rightarrow P\left( P \right)=\dfrac{3}{4}$
Also, it is given that 10 % of the students fail in both subjects. So, we can say 90% of the students passed either in physics, or in mathematics, or in both.
$\begin{align}
& \Rightarrow P\left( M\cup P \right)=\dfrac{90}{100} \\
& \Rightarrow P\left( M\cup P \right)=\dfrac{9}{10} \\
\end{align}$
Using formula (2), we get,
\[\begin{align}
& P\left( M\cap P \right)=\dfrac{7}{10}+\dfrac{3}{4}-\dfrac{9}{10} \\
& \Rightarrow P\left( M\cap P \right)=\dfrac{28+30-36}{40} \\
& \Rightarrow P\left( M\cap P \right)=\dfrac{22}{40} \\
& \Rightarrow P\left( M\cap P \right)=\dfrac{11}{20} \\
\end{align}\]
Using formula (1), the probability that the student passes in mathematics given that he passes in physics is equal to,
$\begin{align}
& P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)} \\
& \Rightarrow P\left( M|P \right)=\dfrac{\dfrac{11}{20}}{\dfrac{7}{10}} \\
& \Rightarrow P\left( M|P \right)=\dfrac{11}{14} \\
\end{align}$
Hence, the answer is $\dfrac{11}{14}$.
Note: There is a possibility that one may commit a mistake while using the formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)}$. Instead of the correct formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)}$, it is possible that one may use the formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( M \right)}$ which will lead us to an incorrect answer.
Complete step by step solution:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
If we are given two events A and B, then the probability of event A given that event B will also occur is given by the formula,
$P\left( A|B \right)=\dfrac{P\left( A\cap B \right)}{P\left( B \right)}$ . . . . . . . . . . . . . (1)
Also, in probability, we have a formula $P\left( A\cap B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cup B \right)$ . . . . . . . . . (2)
For this question, let us denote P be the event that the student passes in physics and let us denote the M be the event that the student passes in mathematics.
It is given that 70 % students pass in physics, so, $P\left( P \right)=\dfrac{70}{100}$.
$\Rightarrow P\left( M \right)=\dfrac{7}{10}$
It is given that 75 % students pass in mathematics, so, $P\left( M \right)=\dfrac{75}{100}$.
$\Rightarrow P\left( P \right)=\dfrac{3}{4}$
Also, it is given that 10 % of the students fail in both subjects. So, we can say 90% of the students passed either in physics, or in mathematics, or in both.
$\begin{align}
& \Rightarrow P\left( M\cup P \right)=\dfrac{90}{100} \\
& \Rightarrow P\left( M\cup P \right)=\dfrac{9}{10} \\
\end{align}$
Using formula (2), we get,
\[\begin{align}
& P\left( M\cap P \right)=\dfrac{7}{10}+\dfrac{3}{4}-\dfrac{9}{10} \\
& \Rightarrow P\left( M\cap P \right)=\dfrac{28+30-36}{40} \\
& \Rightarrow P\left( M\cap P \right)=\dfrac{22}{40} \\
& \Rightarrow P\left( M\cap P \right)=\dfrac{11}{20} \\
\end{align}\]
Using formula (1), the probability that the student passes in mathematics given that he passes in physics is equal to,
$\begin{align}
& P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)} \\
& \Rightarrow P\left( M|P \right)=\dfrac{\dfrac{11}{20}}{\dfrac{7}{10}} \\
& \Rightarrow P\left( M|P \right)=\dfrac{11}{14} \\
\end{align}$
Hence, the answer is $\dfrac{11}{14}$.
Note: There is a possibility that one may commit a mistake while using the formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)}$. Instead of the correct formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( P \right)}$, it is possible that one may use the formula $P\left( M|P \right)=\dfrac{P\left( M\cap P \right)}{P\left( M \right)}$ which will lead us to an incorrect answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
