Answer
Verified
454.5k+ views
Hint: Use integration reduction method which relies on recurrence relations. This method is used when the expression contains integer parameters in the form of power of elementary functions. This method can be derived from any common method of integration, like partial integration or integration by substitution.
Complete step by step solution:
In this question write \[{I_n} = \int {{{\cot }^n}xdx} \]in the reduction form and then use the chain rule to simplify and find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\].
Given \[{I_n} = \int {{{\cot }^n}xdx} \] the use the reduction method, we can write
\[{I_n} = \int {{{\cot }^n}xdx} = \int {{{\cot }^{n - 2}}{{\cot }^2}xdx} \]
We know\[\cos e{c^2}x = 1 + {\cot ^2}x\], hence we can write
\[
{I_n} = \int {{{\cot }^{n - 2}}x\left( {\cos e{c^2}x - 1} \right)dx} \\
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - \int {{{\cot }^{n - 2}}x} dx} \\
\]
Since\[{I_n} = \int {{{\cot }^n}xdx} \]hence we can write \[\int {{{\cot }^{n - 2}}xdx = {I_{n - 2}}} \]
So we can write:
\[
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - {I_{n - 2}}} \\
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
\]
Now let us assume \[\cot x = t\]
By differentiating \[\cot x = t\] with respect to t we get,
\[
\dfrac{d}{{dx}}(\cot x) = \dfrac{{dt}}{{dx}} \\
- \cos e{c^2}xdx = dt \\
\]
Hence we can write:
\[
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
= - \int {{t^{n - 2}}dt} \\
\]
Now integrate:
\[
{I_n} + {I_{n - 2}} = - \int {{t^{n - 2}}dt} \\
= - \dfrac{{{t^{n - 2 + 1}}}}{{n - 2 + 1}} = - \dfrac{{{t^{n - 1}}}}{{n - 1}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}} \\
\]
Hence,
\[{I_n} + {I_{n - 2}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}}\] where, \[n \geqslant 2\]
Now replace n with (n+2), we can write
\[{I_{n + 2}} + {I_n} = - \dfrac{{{{\cot }^{n + 1}}x}}{{n + 1}}\]
Now we have to find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\], write the given function in the pair of the common difference of 2 as \[{I_{n + 2}},{I_n}\]:
\[
{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = \left( {{I_0} + {I_2}} \right) + \left( {{I_1} + {I_3}} \right) + \left( {{I_2} + {I_4}} \right) + \left( {{I_3} + {I_5}} \right) + \left( {{I_4} + {I_6}} \right) + \left( {{I_5} + {I_7}} \right) + \left( {{I_8} + {I_{10}}} \right) + \left( {{I_7} + {I_9}} \right) \\
= - \cot x - \dfrac{{{{\cot }^2}x}}{2} - \dfrac{{{{\cot }^3}x}}{3} - .......... - \dfrac{{{{\cot }^9}x}}{9} \\
= - \left( {\cot x + \dfrac{{{{\cot }^2}x}}{2} + \dfrac{{{{\cot }^3}x}}{3} + .......... + \dfrac{{{{\cot }^9}x}}{9}} \right) \\
\]
Since \[u = \cot x\]is given hence, we can write
\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = - \left( {u + \dfrac{{{u^2}}}{2} + \dfrac{{{u^3}}}{3} + .......... + \dfrac{{{u^9}}}{9}} \right)\]
Hence option B is correct.
Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Complete step by step solution:
In this question write \[{I_n} = \int {{{\cot }^n}xdx} \]in the reduction form and then use the chain rule to simplify and find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\].
Given \[{I_n} = \int {{{\cot }^n}xdx} \] the use the reduction method, we can write
\[{I_n} = \int {{{\cot }^n}xdx} = \int {{{\cot }^{n - 2}}{{\cot }^2}xdx} \]
We know\[\cos e{c^2}x = 1 + {\cot ^2}x\], hence we can write
\[
{I_n} = \int {{{\cot }^{n - 2}}x\left( {\cos e{c^2}x - 1} \right)dx} \\
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - \int {{{\cot }^{n - 2}}x} dx} \\
\]
Since\[{I_n} = \int {{{\cot }^n}xdx} \]hence we can write \[\int {{{\cot }^{n - 2}}xdx = {I_{n - 2}}} \]
So we can write:
\[
{I_n} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx - {I_{n - 2}}} \\
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
\]
Now let us assume \[\cot x = t\]
By differentiating \[\cot x = t\] with respect to t we get,
\[
\dfrac{d}{{dx}}(\cot x) = \dfrac{{dt}}{{dx}} \\
- \cos e{c^2}xdx = dt \\
\]
Hence we can write:
\[
{I_n} + {I_{n - 2}} = \int {{{\cot }^{n - 2}}x\cos e{c^2}xdx} \\
= - \int {{t^{n - 2}}dt} \\
\]
Now integrate:
\[
{I_n} + {I_{n - 2}} = - \int {{t^{n - 2}}dt} \\
= - \dfrac{{{t^{n - 2 + 1}}}}{{n - 2 + 1}} = - \dfrac{{{t^{n - 1}}}}{{n - 1}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}} \\
\]
Hence,
\[{I_n} + {I_{n - 2}} = - \dfrac{{{{\cot }^{n - 1}}x}}{{n - 1}}\] where, \[n \geqslant 2\]
Now replace n with (n+2), we can write
\[{I_{n + 2}} + {I_n} = - \dfrac{{{{\cot }^{n + 1}}x}}{{n + 1}}\]
Now we have to find the value of\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}}\], write the given function in the pair of the common difference of 2 as \[{I_{n + 2}},{I_n}\]:
\[
{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = \left( {{I_0} + {I_2}} \right) + \left( {{I_1} + {I_3}} \right) + \left( {{I_2} + {I_4}} \right) + \left( {{I_3} + {I_5}} \right) + \left( {{I_4} + {I_6}} \right) + \left( {{I_5} + {I_7}} \right) + \left( {{I_8} + {I_{10}}} \right) + \left( {{I_7} + {I_9}} \right) \\
= - \cot x - \dfrac{{{{\cot }^2}x}}{2} - \dfrac{{{{\cot }^3}x}}{3} - .......... - \dfrac{{{{\cot }^9}x}}{9} \\
= - \left( {\cot x + \dfrac{{{{\cot }^2}x}}{2} + \dfrac{{{{\cot }^3}x}}{3} + .......... + \dfrac{{{{\cot }^9}x}}{9}} \right) \\
\]
Since \[u = \cot x\]is given hence, we can write
\[{I_0} + {I_1} + 2\left( {{I_2} + {I_3} + ...... + {I_8}} \right) + {I_9} + {I_{10}} = - \left( {u + \dfrac{{{u^2}}}{2} + \dfrac{{{u^3}}}{3} + .......... + \dfrac{{{u^9}}}{9}} \right)\]
Hence option B is correct.
Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE