
If\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \], where \[\alpha \],\[\beta \],\[\gamma \] are rational numbers and two roots of \[f(x) = 0\] and eccentricities of a parabola and a rectangular hyperbola, then \[\alpha + \beta + \gamma \] is equal to:
A.-1
B.0
C.1
D.2
Answer
464.7k+ views
Hint: By the given equation and condition we find the roots of the given polynomial. After finding the roots of the polynomial we solve this and comparing with the given polynomial, we obtain the \[\alpha \],\[\beta \],\[\gamma \] values.
Complete step-by-step answer:
We know that the eccentricity of a parabola is \[1\].
Also, the eccentricity of a rectangular hyperbola can be determined and it’s shown below:
Rectangular hyperbola is a hyperbola for which the asymptotes are perpendicular, also called an equilateral hyperbola or right hyperbola. This occurs when the si-major and semi- major are equal.
So \[a = b\]
We know that the eccentricity of hyperbola
\[e = \dfrac{{{{({a^2} + {b^2})}^{\dfrac{1}{2}}}}}{a}\]
In rectangular hyperbola we have \[a = b\]
\[ \Rightarrow e = \dfrac{{{{(2{a^2})}^{\dfrac{1}{2}}}}}{a}\]
\[ \Rightarrow e = \dfrac{{\sqrt 2 a}}{a}\]
Hence, \[e = \sqrt 2 \]
Thus the root of polynomial \[f(x)\] is \[1\], \[\sqrt 2 \] and \[ - \sqrt 2 \]
Now \[f(x) = (x - 1)(x - \sqrt 2 )(x + \sqrt 2 )\]
Expanding the first and second brackets,
\[ \Rightarrow f(x) = ({x^2} - x\sqrt 2 - x + \sqrt 2 )(x + \sqrt 2 )\]
Again expanding barkers, we get a polynomial,
\[ \Rightarrow f(x) = {x^3} - {x^2}\sqrt 2 - {x^2} + \sqrt 2 x + {x^2}\sqrt 2 - 2x - \sqrt 2 x + 2\]
Cancelling terms and rearranging,
\[ \Rightarrow f(x) = {x^3} - {x^2} - 2x + 2\]
Comparing with the coefficients given polynomial,
\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \]
We get that \[\alpha = - 1\], \[\beta = - 2\] and \[\gamma = 2\]
Now we need the value of \[\alpha + \beta + \gamma \], and we know the individual values,
Substituting these we get,
\[ \Rightarrow \alpha + \beta + \gamma = - 1 - 2 + 1\]
\[ \Rightarrow \alpha + \beta + \gamma = - 1\]
So, the correct answer is “Option A”.
Note: In conic section, there is a locus of a point in which the distance to the point and the line are in the constant ratio. That ratio is known as eccentricity. It is denoted by\[e\]. We choose another root as \[ - \sqrt 2 \] because if one root is irrational it occurs in a conjugate pair.
Complete step-by-step answer:
We know that the eccentricity of a parabola is \[1\].
Also, the eccentricity of a rectangular hyperbola can be determined and it’s shown below:
Rectangular hyperbola is a hyperbola for which the asymptotes are perpendicular, also called an equilateral hyperbola or right hyperbola. This occurs when the si-major and semi- major are equal.
So \[a = b\]
We know that the eccentricity of hyperbola
\[e = \dfrac{{{{({a^2} + {b^2})}^{\dfrac{1}{2}}}}}{a}\]
In rectangular hyperbola we have \[a = b\]
\[ \Rightarrow e = \dfrac{{{{(2{a^2})}^{\dfrac{1}{2}}}}}{a}\]
\[ \Rightarrow e = \dfrac{{\sqrt 2 a}}{a}\]
Hence, \[e = \sqrt 2 \]
Thus the root of polynomial \[f(x)\] is \[1\], \[\sqrt 2 \] and \[ - \sqrt 2 \]
Now \[f(x) = (x - 1)(x - \sqrt 2 )(x + \sqrt 2 )\]
Expanding the first and second brackets,
\[ \Rightarrow f(x) = ({x^2} - x\sqrt 2 - x + \sqrt 2 )(x + \sqrt 2 )\]
Again expanding barkers, we get a polynomial,
\[ \Rightarrow f(x) = {x^3} - {x^2}\sqrt 2 - {x^2} + \sqrt 2 x + {x^2}\sqrt 2 - 2x - \sqrt 2 x + 2\]
Cancelling terms and rearranging,
\[ \Rightarrow f(x) = {x^3} - {x^2} - 2x + 2\]
Comparing with the coefficients given polynomial,
\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \]
We get that \[\alpha = - 1\], \[\beta = - 2\] and \[\gamma = 2\]
Now we need the value of \[\alpha + \beta + \gamma \], and we know the individual values,
Substituting these we get,
\[ \Rightarrow \alpha + \beta + \gamma = - 1 - 2 + 1\]
\[ \Rightarrow \alpha + \beta + \gamma = - 1\]
So, the correct answer is “Option A”.
Note: In conic section, there is a locus of a point in which the distance to the point and the line are in the constant ratio. That ratio is known as eccentricity. It is denoted by\[e\]. We choose another root as \[ - \sqrt 2 \] because if one root is irrational it occurs in a conjugate pair.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
