
If\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \], where \[\alpha \],\[\beta \],\[\gamma \] are rational numbers and two roots of \[f(x) = 0\] and eccentricities of a parabola and a rectangular hyperbola, then \[\alpha + \beta + \gamma \] is equal to:
A.-1
B.0
C.1
D.2
Answer
559.2k+ views
Hint: By the given equation and condition we find the roots of the given polynomial. After finding the roots of the polynomial we solve this and comparing with the given polynomial, we obtain the \[\alpha \],\[\beta \],\[\gamma \] values.
Complete step-by-step answer:
We know that the eccentricity of a parabola is \[1\].
Also, the eccentricity of a rectangular hyperbola can be determined and it’s shown below:
Rectangular hyperbola is a hyperbola for which the asymptotes are perpendicular, also called an equilateral hyperbola or right hyperbola. This occurs when the si-major and semi- major are equal.
So \[a = b\]
We know that the eccentricity of hyperbola
\[e = \dfrac{{{{({a^2} + {b^2})}^{\dfrac{1}{2}}}}}{a}\]
In rectangular hyperbola we have \[a = b\]
\[ \Rightarrow e = \dfrac{{{{(2{a^2})}^{\dfrac{1}{2}}}}}{a}\]
\[ \Rightarrow e = \dfrac{{\sqrt 2 a}}{a}\]
Hence, \[e = \sqrt 2 \]
Thus the root of polynomial \[f(x)\] is \[1\], \[\sqrt 2 \] and \[ - \sqrt 2 \]
Now \[f(x) = (x - 1)(x - \sqrt 2 )(x + \sqrt 2 )\]
Expanding the first and second brackets,
\[ \Rightarrow f(x) = ({x^2} - x\sqrt 2 - x + \sqrt 2 )(x + \sqrt 2 )\]
Again expanding barkers, we get a polynomial,
\[ \Rightarrow f(x) = {x^3} - {x^2}\sqrt 2 - {x^2} + \sqrt 2 x + {x^2}\sqrt 2 - 2x - \sqrt 2 x + 2\]
Cancelling terms and rearranging,
\[ \Rightarrow f(x) = {x^3} - {x^2} - 2x + 2\]
Comparing with the coefficients given polynomial,
\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \]
We get that \[\alpha = - 1\], \[\beta = - 2\] and \[\gamma = 2\]
Now we need the value of \[\alpha + \beta + \gamma \], and we know the individual values,
Substituting these we get,
\[ \Rightarrow \alpha + \beta + \gamma = - 1 - 2 + 1\]
\[ \Rightarrow \alpha + \beta + \gamma = - 1\]
So, the correct answer is “Option A”.
Note: In conic section, there is a locus of a point in which the distance to the point and the line are in the constant ratio. That ratio is known as eccentricity. It is denoted by\[e\]. We choose another root as \[ - \sqrt 2 \] because if one root is irrational it occurs in a conjugate pair.
Complete step-by-step answer:
We know that the eccentricity of a parabola is \[1\].
Also, the eccentricity of a rectangular hyperbola can be determined and it’s shown below:
Rectangular hyperbola is a hyperbola for which the asymptotes are perpendicular, also called an equilateral hyperbola or right hyperbola. This occurs when the si-major and semi- major are equal.
So \[a = b\]
We know that the eccentricity of hyperbola
\[e = \dfrac{{{{({a^2} + {b^2})}^{\dfrac{1}{2}}}}}{a}\]
In rectangular hyperbola we have \[a = b\]
\[ \Rightarrow e = \dfrac{{{{(2{a^2})}^{\dfrac{1}{2}}}}}{a}\]
\[ \Rightarrow e = \dfrac{{\sqrt 2 a}}{a}\]
Hence, \[e = \sqrt 2 \]
Thus the root of polynomial \[f(x)\] is \[1\], \[\sqrt 2 \] and \[ - \sqrt 2 \]
Now \[f(x) = (x - 1)(x - \sqrt 2 )(x + \sqrt 2 )\]
Expanding the first and second brackets,
\[ \Rightarrow f(x) = ({x^2} - x\sqrt 2 - x + \sqrt 2 )(x + \sqrt 2 )\]
Again expanding barkers, we get a polynomial,
\[ \Rightarrow f(x) = {x^3} - {x^2}\sqrt 2 - {x^2} + \sqrt 2 x + {x^2}\sqrt 2 - 2x - \sqrt 2 x + 2\]
Cancelling terms and rearranging,
\[ \Rightarrow f(x) = {x^3} - {x^2} - 2x + 2\]
Comparing with the coefficients given polynomial,
\[f(x) = {x^3} + \alpha {x^2} + \beta x + \gamma \]
We get that \[\alpha = - 1\], \[\beta = - 2\] and \[\gamma = 2\]
Now we need the value of \[\alpha + \beta + \gamma \], and we know the individual values,
Substituting these we get,
\[ \Rightarrow \alpha + \beta + \gamma = - 1 - 2 + 1\]
\[ \Rightarrow \alpha + \beta + \gamma = - 1\]
So, the correct answer is “Option A”.
Note: In conic section, there is a locus of a point in which the distance to the point and the line are in the constant ratio. That ratio is known as eccentricity. It is denoted by\[e\]. We choose another root as \[ - \sqrt 2 \] because if one root is irrational it occurs in a conjugate pair.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

