# If\[{{e}^{x+y}}=xy\], then show that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left( {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\].

Last updated date: 23rd Mar 2023

•

Total views: 308.1k

•

Views today: 4.86k

Answer

Verified

308.1k+ views

Hint: Directly apply the differentiation to the given expression using the exponential differentiation, product and quotient rule of differentiation. Convert the first order derivative in terms of $'x'$ and $'y'$. Then proceed with finding the second order derivative and simplify it.

The given expression is \[{{e}^{x+y}}=xy\]

Differentiate the given expression with respect to $'x'$ , we get

\[\dfrac{d}{dx}\left( {{e}^{x+y}} \right)=\dfrac{d}{dx}\left( xy \right)\]

We know differentiation of exponential is, $\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$, so the above equation becomes,

\[\Rightarrow {{e}^{x+y}}\dfrac{d}{dx}\left( x+y \right)=\dfrac{d}{dx}\left( xy \right)\]

We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get

\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=x\dfrac{dy}{dx}+y\dfrac{d(x)}{dx}\]

\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}.\]

From given expression we have\[{{e}^{x+y}}=xy\], putting this value in above equation, we get

\[xy\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}\]

\[\Rightarrow xy+xy\dfrac{dy}{dx}=y+x\dfrac{dy}{dx}\]

Bringing the like terms on one side, we get

\[\Rightarrow xy\dfrac{dy}{dx}-x\dfrac{dy}{dx}=y-xy\]

Taking out the common terms, we get

\[\Rightarrow x\left( y-1 \right)\dfrac{dy}{dx}=y\left( 1-x \right)\]

\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}.........(i)\]

Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get

\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\]

Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x(y-1)\dfrac{dy}{dx}\left[ y\left( 1-x \right) \right] \right)-\left( y\left( 1-x \right)\dfrac{d}{dx}\left[ x(y-1) \right] \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Now applying the product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y\dfrac{d}{dx}\left( 1-x \right)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{d}{dx}\left( y-1 \right)+(y-1)\dfrac{d(x)}{dx} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

We know differentiation of constant term is zero, so solving the above equation, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y(-1)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{dy}{dx}+(y-1)(1) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Substituting the value \[\dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}\] from equation (i) in the above equation, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\left( 1-x \right)-y \right)-y\left( 1-x \right)\left( \left( y-1 \right)+x\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Solving the innermost brackets first, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{x\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Cancelling the like terms, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( \dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Now taking $'y'$ common, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left[ \left( y-1 \right){{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-(1-x){{(y-1)}^{2}}-y{{\left( 1-x \right)}^{2}} \right]}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Opening the two-two brackets, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ y{{\left( 1-x \right)}^{2}}-{{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-{{\left( y-1 \right)}^{2}}+x{{\left( y-1 \right)}^{2}}-y{{\left( 1-x \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Cancelling the like terms, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ -{{\left( 1-x \right)}^{2}}-{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left\{ {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Hence proved

Note: Another way to solve this is first take log on both sides of the given expression, as shown below.

\[\ln \left( {{e}^{x+y}} \right)=\ln \left( xy \right)\]

\[\Rightarrow xy\ln \left( e \right)=\ln \left( xy \right)\]

\[\Rightarrow xy=\ln \left( xy \right)\]

Then perform the next steps.

The given expression is \[{{e}^{x+y}}=xy\]

Differentiate the given expression with respect to $'x'$ , we get

\[\dfrac{d}{dx}\left( {{e}^{x+y}} \right)=\dfrac{d}{dx}\left( xy \right)\]

We know differentiation of exponential is, $\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$, so the above equation becomes,

\[\Rightarrow {{e}^{x+y}}\dfrac{d}{dx}\left( x+y \right)=\dfrac{d}{dx}\left( xy \right)\]

We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get

\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=x\dfrac{dy}{dx}+y\dfrac{d(x)}{dx}\]

\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}.\]

From given expression we have\[{{e}^{x+y}}=xy\], putting this value in above equation, we get

\[xy\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}\]

\[\Rightarrow xy+xy\dfrac{dy}{dx}=y+x\dfrac{dy}{dx}\]

Bringing the like terms on one side, we get

\[\Rightarrow xy\dfrac{dy}{dx}-x\dfrac{dy}{dx}=y-xy\]

Taking out the common terms, we get

\[\Rightarrow x\left( y-1 \right)\dfrac{dy}{dx}=y\left( 1-x \right)\]

\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}.........(i)\]

Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get

\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\]

Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x(y-1)\dfrac{dy}{dx}\left[ y\left( 1-x \right) \right] \right)-\left( y\left( 1-x \right)\dfrac{d}{dx}\left[ x(y-1) \right] \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Now applying the product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y\dfrac{d}{dx}\left( 1-x \right)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{d}{dx}\left( y-1 \right)+(y-1)\dfrac{d(x)}{dx} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

We know differentiation of constant term is zero, so solving the above equation, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y(-1)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{dy}{dx}+(y-1)(1) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Substituting the value \[\dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}\] from equation (i) in the above equation, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\left( 1-x \right)-y \right)-y\left( 1-x \right)\left( \left( y-1 \right)+x\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Solving the innermost brackets first, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{x\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

Cancelling the like terms, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( \dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Now taking $'y'$ common, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left[ \left( y-1 \right){{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-(1-x){{(y-1)}^{2}}-y{{\left( 1-x \right)}^{2}} \right]}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Opening the two-two brackets, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ y{{\left( 1-x \right)}^{2}}-{{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-{{\left( y-1 \right)}^{2}}+x{{\left( y-1 \right)}^{2}}-y{{\left( 1-x \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Cancelling the like terms, we get

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ -{{\left( 1-x \right)}^{2}}-{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left\{ {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]

Hence proved

Note: Another way to solve this is first take log on both sides of the given expression, as shown below.

\[\ln \left( {{e}^{x+y}} \right)=\ln \left( xy \right)\]

\[\Rightarrow xy\ln \left( e \right)=\ln \left( xy \right)\]

\[\Rightarrow xy=\ln \left( xy \right)\]

Then perform the next steps.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?