
If\[{{e}^{x+y}}=xy\], then show that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left( {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\].
Answer
515.1k+ views
Hint: Directly apply the differentiation to the given expression using the exponential differentiation, product and quotient rule of differentiation. Convert the first order derivative in terms of $'x'$ and $'y'$. Then proceed with finding the second order derivative and simplify it.
The given expression is \[{{e}^{x+y}}=xy\]
Differentiate the given expression with respect to $'x'$ , we get
\[\dfrac{d}{dx}\left( {{e}^{x+y}} \right)=\dfrac{d}{dx}\left( xy \right)\]
We know differentiation of exponential is, $\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$, so the above equation becomes,
\[\Rightarrow {{e}^{x+y}}\dfrac{d}{dx}\left( x+y \right)=\dfrac{d}{dx}\left( xy \right)\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=x\dfrac{dy}{dx}+y\dfrac{d(x)}{dx}\]
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}.\]
From given expression we have\[{{e}^{x+y}}=xy\], putting this value in above equation, we get
\[xy\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}\]
\[\Rightarrow xy+xy\dfrac{dy}{dx}=y+x\dfrac{dy}{dx}\]
Bringing the like terms on one side, we get
\[\Rightarrow xy\dfrac{dy}{dx}-x\dfrac{dy}{dx}=y-xy\]
Taking out the common terms, we get
\[\Rightarrow x\left( y-1 \right)\dfrac{dy}{dx}=y\left( 1-x \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}.........(i)\]
Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x(y-1)\dfrac{dy}{dx}\left[ y\left( 1-x \right) \right] \right)-\left( y\left( 1-x \right)\dfrac{d}{dx}\left[ x(y-1) \right] \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Now applying the product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y\dfrac{d}{dx}\left( 1-x \right)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{d}{dx}\left( y-1 \right)+(y-1)\dfrac{d(x)}{dx} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
We know differentiation of constant term is zero, so solving the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y(-1)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{dy}{dx}+(y-1)(1) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Substituting the value \[\dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}\] from equation (i) in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\left( 1-x \right)-y \right)-y\left( 1-x \right)\left( \left( y-1 \right)+x\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Solving the innermost brackets first, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{x\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( \dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Now taking $'y'$ common, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left[ \left( y-1 \right){{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-(1-x){{(y-1)}^{2}}-y{{\left( 1-x \right)}^{2}} \right]}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Opening the two-two brackets, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ y{{\left( 1-x \right)}^{2}}-{{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-{{\left( y-1 \right)}^{2}}+x{{\left( y-1 \right)}^{2}}-y{{\left( 1-x \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ -{{\left( 1-x \right)}^{2}}-{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left\{ {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Hence proved
Note: Another way to solve this is first take log on both sides of the given expression, as shown below.
\[\ln \left( {{e}^{x+y}} \right)=\ln \left( xy \right)\]
\[\Rightarrow xy\ln \left( e \right)=\ln \left( xy \right)\]
\[\Rightarrow xy=\ln \left( xy \right)\]
Then perform the next steps.
The given expression is \[{{e}^{x+y}}=xy\]
Differentiate the given expression with respect to $'x'$ , we get
\[\dfrac{d}{dx}\left( {{e}^{x+y}} \right)=\dfrac{d}{dx}\left( xy \right)\]
We know differentiation of exponential is, $\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$, so the above equation becomes,
\[\Rightarrow {{e}^{x+y}}\dfrac{d}{dx}\left( x+y \right)=\dfrac{d}{dx}\left( xy \right)\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=x\dfrac{dy}{dx}+y\dfrac{d(x)}{dx}\]
\[{{e}^{x+y}}\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}.\]
From given expression we have\[{{e}^{x+y}}=xy\], putting this value in above equation, we get
\[xy\left( 1+\dfrac{dy}{dx} \right)=y+x\dfrac{dy}{dx}\]
\[\Rightarrow xy+xy\dfrac{dy}{dx}=y+x\dfrac{dy}{dx}\]
Bringing the like terms on one side, we get
\[\Rightarrow xy\dfrac{dy}{dx}-x\dfrac{dy}{dx}=y-xy\]
Taking out the common terms, we get
\[\Rightarrow x\left( y-1 \right)\dfrac{dy}{dx}=y\left( 1-x \right)\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}.........(i)\]
Now we need to find the second order derivative, so we will differentiate the above equation with respect to $'x'$, we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( x(y-1)\dfrac{dy}{dx}\left[ y\left( 1-x \right) \right] \right)-\left( y\left( 1-x \right)\dfrac{d}{dx}\left[ x(y-1) \right] \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Now applying the product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y\dfrac{d}{dx}\left( 1-x \right)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{d}{dx}\left( y-1 \right)+(y-1)\dfrac{d(x)}{dx} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
We know differentiation of constant term is zero, so solving the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x(y-1)\left( y(-1)+(1-x)\dfrac{dy}{dx} \right)-y\left( 1-x \right)\left( x\dfrac{dy}{dx}+(y-1)(1) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Substituting the value \[\dfrac{dy}{dx}=\dfrac{y\left( 1-x \right)}{x\left( y-1 \right)}\] from equation (i) in the above equation, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right)\left( 1-x \right)-y \right)-y\left( 1-x \right)\left( \left( y-1 \right)+x\left( \dfrac{y\left( 1-x \right)}{x\left( y-1 \right)} \right) \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Solving the innermost brackets first, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{x\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{x\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( y-1 \right)\left( \dfrac{y{{\left( 1-x \right)}^{2}}-yx(y-1)}{\left( y-1 \right)} \right)-y\left( 1-x \right)\left( \dfrac{{{(y-1)}^{2}}+y\left( 1-x \right)}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( \dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{\left( y-1 \right)} \right)}{{{x}^{2}}{{\left( y-1 \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left( y-1 \right){{\left( 1-x \right)}^{2}}-yx{{(y-1)}^{2}}-y(1-x){{(y-1)}^{2}}-{{y}^{2}}{{\left( 1-x \right)}^{2}}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Now taking $'y'$ common, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left[ \left( y-1 \right){{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-(1-x){{(y-1)}^{2}}-y{{\left( 1-x \right)}^{2}} \right]}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Opening the two-two brackets, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ y{{\left( 1-x \right)}^{2}}-{{\left( 1-x \right)}^{2}}-x{{(y-1)}^{2}}-{{\left( y-1 \right)}^{2}}+x{{\left( y-1 \right)}^{2}}-y{{\left( 1-x \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\left\{ -{{\left( 1-x \right)}^{2}}-{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-y\left\{ {{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}} \right\}}{{{x}^{2}}{{\left( y-1 \right)}^{3}}}\]
Hence proved
Note: Another way to solve this is first take log on both sides of the given expression, as shown below.
\[\ln \left( {{e}^{x+y}} \right)=\ln \left( xy \right)\]
\[\Rightarrow xy\ln \left( e \right)=\ln \left( xy \right)\]
\[\Rightarrow xy=\ln \left( xy \right)\]
Then perform the next steps.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
