
If $z(2 - i) = 3 + i$ then ${z^{20}} = $ :
A. $ - 1024$
B. $1 - i$
C. $1 + i$
D. $1024$
Answer
568.5k+ views
Hint: First try to find out the $z$ after getting rationalise it and try to convert it as $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ Now we have to find out the ${z^{20}}$ so take $20$ on both sides and solve according to that .
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

