Answer
Verified
454.8k+ views
Hint: First try to find out the $z$ after getting rationalise it and try to convert it as $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ Now we have to find out the ${z^{20}}$ so take $20$ on both sides and solve according to that .
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE