
If $z(2 - i) = 3 + i$ then ${z^{20}} = $ :
A. $ - 1024$
B. $1 - i$
C. $1 + i$
D. $1024$
Answer
582.6k+ views
Hint: First try to find out the $z$ after getting rationalise it and try to convert it as $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ Now we have to find out the ${z^{20}}$ so take $20$ on both sides and solve according to that .
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Complete step-by-step answer:
In this question first try to find out the z for this ,
$z(2 - i) = 3 + i$
Now transfer $2 - i$ to the RHS , or in denominator of RHS ,
we get
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}}$
Now multiply and divide $2 + i$ in both numerator and denominator ,
$\Rightarrow$$z = \dfrac{{3 + i}}{{2 - i}} \times \dfrac{{2 + i}}{{2 + i}}$
On solving we get ,
$\Rightarrow$$z = \dfrac{{6 + 3i + 2i + {i^2}}}{{{2^2} - {i^2}}}$
We know that the value of ${i^2} = - 1$ hence put it on equation
$\Rightarrow$$z = \dfrac{{5 + 5i}}{5}$
or $z = 1 + i$
Now try to convert $z = \left| z \right|\left( {\cos \theta + i\sin \theta } \right)$ because this can be also written as $z = \left| z \right|{e^{i\theta }}$ so for this take common $\sqrt 2 $ from the equation $z = 1 + i$
$\Rightarrow$$z = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right)$
As we know that the $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ hence
$\Rightarrow$$z = \sqrt 2 \left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)$
It can also be written as $z = \sqrt 2 {e^{i\dfrac{\pi }{4}}}$
Now we have to find out the ${z^{20}}$ so ,
$\Rightarrow$${z^{20}} = {\left( {\sqrt 2 {e^{i\dfrac{\pi }{4}}}} \right)^{20}}$
$\Rightarrow$${z^{20}} = \left( {{{\left( {\sqrt 2 } \right)}^{20}}{e^{i\dfrac{\pi }{4} \times 20}}} \right)$
$\Rightarrow$${z^{20}} = \left( {{2^{10}}{e^{i5\pi }}} \right)$
So ${2^{10}} = 1024$ and we can write ${e^{i5\pi }} = \cos 5\pi + i\sin 5\pi $
$\Rightarrow$${z^{20}} = 1024\left( {\cos 5\pi + i\sin 5\pi } \right)$
And as we know that the value of $\cos 5\pi = - 1$ and $\sin 5\pi = 0$ therefore ,
$\Rightarrow$${z^{20}} = - 1024$
Hence option A is the correct answer.
Note: De Moivre’s Theorem for integral index state that If n is a integer, then ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos n\theta + i\sin n\theta $ we will use this proof in solving the question .
In general, if n be a positive integer then, where $\omega $ is the cube root of unity
$\
{\omega ^{3n}} = {({\omega ^3})^n} = {1^n} = 1 \\
{\omega ^{3n + 1}} = {\omega ^{3n}}.\omega = 1.\omega = \omega \\
{\omega ^{3n + 2}} = {\omega ^{3n}}.{\omega ^2} = 1.{\omega ^2} = {\omega ^2} \\
\ $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

