
If ${{z}_{1}}=\sqrt{3}+\iota \sqrt{3}$ and ${{z}_{2}}=\sqrt{3}+\iota $ , then the complex number \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\] lies in the
(a) First quadrant
(b) Second quadrant
(c) Third quadrant
(d) Fourth quadrant
Answer
218.4k+ views
Hint: We can use the conjugate multiplication of the denominator in both numerator and
denominator and hence simplify the complex number and find the real and imaginary part of the
complex number and check for the quadrant.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represents the x and y coordinates of
the point being represented by the complex number. Here, we have been given with two complex
numbers
${{z}_{1}}=\sqrt{3}+\iota \sqrt{3}............(i)$
and ${{z}_{2}}=\sqrt{3}+\iota .......(ii)$
Calculating \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\] by substituting the values from (i) and
(ii)
$\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota } \right)}^{50}}$
Multiplying and dividing by the conjugate of the ${{z}_{2}}$ in numerator and denominator and then
solving, we get,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota }\times \dfrac{\sqrt{3}-\iota }{\sqrt{3}-\iota } \right)}^{50}} \\
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3}+\iota
\sqrt{3} \right)\left( \sqrt{3}-\iota \right)}{\left( \sqrt{3}+\iota \right)\left( \sqrt{3}-\iota \right)}
\right]}^{50}} \\
\end{align}\]
Now on further simplification by multiplication we get,
\[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3} \right)\left( \sqrt{3}
\right)-\iota \sqrt{3}+\left( \iota \sqrt{3} \right)\left( \sqrt{3} \right)-\iota \left( \iota \sqrt{3}
\right)}{\left( \sqrt{3} \right)\left( \sqrt{3} \right)+\iota \left( \sqrt{3} \right)-\iota \left( \sqrt{3}
\right)-\iota \left( \iota \right)} \right]}^{50}}..................(iii)\]
As we know ${{\iota }^{2}}=-1$, substituting in (iii)
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{3-\iota \sqrt{3}+3\iota
+\sqrt{3}}{3+1} \right]}^{50}}\]
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( 3+\sqrt{3}
\right)+\iota \left( 3-\sqrt{3} \right)}{4} \right]}^{50}}\]
Now,
$\dfrac{3+\sqrt{3}}{4}\succ 0$ and $\dfrac{3-\sqrt{3}}{4}\succ 0$
Both the real and imaginary parts are positive and this means the point represented by the complex number lies in the first quadrant as x and y coordinates of a point in the first quadrant are always positive.
Hence, the complex number \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\]is in first quadrant.
Final answer is option (a).
Note: The chances of mistakes are if conjugate of denominator is not multiplied correctly or the sign of the conjugate in numerator or denominator is altered mistakenly or ${{\iota }^{2}}=-1$ is substituted
wrongly as 1. The caution must be taken for interpreting the point’s position in the quadrant.
denominator and hence simplify the complex number and find the real and imaginary part of the
complex number and check for the quadrant.
Complete step-by-step answer:
A complex number has two parts, real and imaginary. These represents the x and y coordinates of
the point being represented by the complex number. Here, we have been given with two complex
numbers
${{z}_{1}}=\sqrt{3}+\iota \sqrt{3}............(i)$
and ${{z}_{2}}=\sqrt{3}+\iota .......(ii)$
Calculating \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\] by substituting the values from (i) and
(ii)
$\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota } \right)}^{50}}$
Multiplying and dividing by the conjugate of the ${{z}_{2}}$ in numerator and denominator and then
solving, we get,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left( \dfrac{\sqrt{3}+\iota
\sqrt{3}}{\sqrt{3}+\iota }\times \dfrac{\sqrt{3}-\iota }{\sqrt{3}-\iota } \right)}^{50}} \\
& \Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3}+\iota
\sqrt{3} \right)\left( \sqrt{3}-\iota \right)}{\left( \sqrt{3}+\iota \right)\left( \sqrt{3}-\iota \right)}
\right]}^{50}} \\
\end{align}\]
Now on further simplification by multiplication we get,
\[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( \sqrt{3} \right)\left( \sqrt{3}
\right)-\iota \sqrt{3}+\left( \iota \sqrt{3} \right)\left( \sqrt{3} \right)-\iota \left( \iota \sqrt{3}
\right)}{\left( \sqrt{3} \right)\left( \sqrt{3} \right)+\iota \left( \sqrt{3} \right)-\iota \left( \sqrt{3}
\right)-\iota \left( \iota \right)} \right]}^{50}}..................(iii)\]
As we know ${{\iota }^{2}}=-1$, substituting in (iii)
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{3-\iota \sqrt{3}+3\iota
+\sqrt{3}}{3+1} \right]}^{50}}\]
\[\Rightarrow {{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}={{\left[ \dfrac{\left( 3+\sqrt{3}
\right)+\iota \left( 3-\sqrt{3} \right)}{4} \right]}^{50}}\]
Now,
$\dfrac{3+\sqrt{3}}{4}\succ 0$ and $\dfrac{3-\sqrt{3}}{4}\succ 0$
Both the real and imaginary parts are positive and this means the point represented by the complex number lies in the first quadrant as x and y coordinates of a point in the first quadrant are always positive.
Hence, the complex number \[{{\left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)}^{50}}\]is in first quadrant.
Final answer is option (a).
Note: The chances of mistakes are if conjugate of denominator is not multiplied correctly or the sign of the conjugate in numerator or denominator is altered mistakenly or ${{\iota }^{2}}=-1$ is substituted
wrongly as 1. The caution must be taken for interpreting the point’s position in the quadrant.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

