Answer

Verified

401.4k+ views

**Hint:**We substitute the value of ‘w’ in the equation \[\left| w \right| = 1\] and break the modulus function to form an equation having modulus on both sides of the equation. Use the value of ‘z’ to find the value of ‘iz’ and substitute those values in the equation.

* In a complex number \[z = x + iy\], the real part is x and the imaginary part is y.

* \[{i^2} = - 1\]

* A complex number is said to be purely real if it has an imaginary part equal to zero and purely imaginary if it has a real part equal to zero.

* Conjugate of a complex number \[z = x + iy\] is denoted by \[\overline z \] and is given by taking the negative value of the imaginary part i.e. \[\overline z = x - iy\].

* Modulus value of \[z = x + iy\] is given by \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]

**Complete step-by-step solution:**

We are given that\[w = \left( {\dfrac{{1 - iz}}{{z - i}}} \right)\].

Since \[\left| w \right| = 1\],,,,,,,,,,,,,,,,,,,… (1)

Substitute the value of \[w = \left( {\dfrac{{1 - iz}}{{z - i}}} \right)\] in equation (1)

\[ \Rightarrow \left| {\dfrac{{1 - iz}}{{z - i}}} \right| = 1\]

We can break modulus in fraction to numerator and denominator

\[ \Rightarrow \dfrac{{\left| {1 - iz} \right|}}{{\left| {z - i} \right|}} = 1\]

Cross multiply the values from denominator in LHS to RHS

\[ \Rightarrow \left| {1 - iz} \right| = \left| {z - i} \right|\]........................… (2)

We are given \[z = x + iy\]...................… (3)

To find the value of ‘iz’ we multiply ‘z’ by ‘i’

\[ \Rightarrow iz = i(x + iy)\]

Open the terms in RHS

\[ \Rightarrow iz = ix + {i^2}y\]

Substitute the value of \[{i^2} = - 1\]in RHS

\[ \Rightarrow iz = ix - y\]

\[ \Rightarrow iz = - y + ix\] …………………..… (4)

Substitute the values from equations (3) and (4) in equation (2)

\[ \Rightarrow \left| {1 - ( - y + ix)} \right| = \left| {(x + iy) - i} \right|\]

\[ \Rightarrow \left| {1 + y + ix} \right| = \left| {x + iy - i} \right|\]

\[ \Rightarrow \left| {(1 + y) + ix} \right| = \left| {x + i(y - 1)} \right|\].................… (5)

Use the formula of modulus on both sides of the equation

\[ \Rightarrow \sqrt {{{(1 + y)}^2} + {{(x)}^2}} = \sqrt {{{(x)}^2} + {{(y - 1)}^2}} \]

Square both sides of the equation

\[ \Rightarrow {\left( {\sqrt {{{(1 + y)}^2} + {{(x)}^2}} } \right)^2} = {\left( {\sqrt {{{(x)}^2} + {{(y - 1)}^2}} } \right)^2}\]

Cancel square root by square power on both sides of the equation

\[ \Rightarrow {(1 + y)^2} + {(x)^2} = {(x)^2} + {(y - 1)^2}\]

Cancel same terms from both sides of the equation

\[ \Rightarrow {(1 + y)^2} = {(y - 1)^2}\]

Use identity \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]in LHS and \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in RHS

\[ \Rightarrow {1^2} + {y^2} + 2 \times 1 \times y = {1^2} + {y^2} - 2 \times 1 \times y\]

\[ \Rightarrow {1^2} + {y^2} + 2y = {1^2} + {y^2} - 2y\]

Cancel same terms from both sides of the equation

\[ \Rightarrow 2y = - 2y\]

Shift all values to LHS of the equation

\[ \Rightarrow 2y + 2y = 0\]

\[ \Rightarrow 4y = 0\]

Divide both sides by 4

\[ \Rightarrow y = 0\]

So, we have y coordinate as zero.

Since we know a complex number is said to be purely real if it has an imaginary part equal to zero.

Here imaginary part (y) of complex number ‘z’ is zero

\[ \Rightarrow \]Complex numbers are purely real.

\[ \Rightarrow \]Z lies on the real line.

**\[\therefore \]Option B is correct.**

**Note:**Students are likely to make mistake of not substituting the value of \[{i^2} = - 1\] in the solution and they try to group together the terms for imaginary part and they include the value with \[{i^2}\] in it, which is wrong. Keep in mind that value of \[{i^2} = - 1\] so it is completely real.

Also, some students write the value of the imaginary part with i along it which should be taken care of, as the imaginary part is the value except i.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE