Answer
Verified
465.3k+ views
Hint- Assume $z = x + iy$ as a complex number, where $x$ and $y$ are real numbers. To solve this question we need to find the real part and imaginary part of ${z^2}$.
Complete Step by step solution:
Let $z = x + iy$, where $x \ne 0 $and $y \ne 0$
Also,
$x$ is real part of $z$ i.e. ${\mathop{\rm Re}\nolimits} (z)$ and,
$y$ is imaginary part i.e. ${\mathop{\rm Im}\nolimits} (z)$
As given in the question,
${\mathop{\rm Re}\nolimits} (z) = {\mathop{\rm Im}\nolimits} (z)$
$ \Rightarrow x = y$ equation (1)
Now, we take square of $z$,
${z^2} = {(x + iy)^2}$
${z^2} = {x^2} - {y^2} + 2ixy$
Here again we have real part and imaginary part as ${\mathop{\rm Re}\nolimits} ({z^2})$ and ${\mathop{\rm Im}\nolimits} ({z^2})$.
For ${\mathop{\rm Re}\nolimits} ({z^2})$,
${\mathop{\rm Re}\nolimits} ({z^2}) = {x^2} - {y^2}$
$ \Rightarrow {\mathop{\rm Re}\nolimits} ({z^2}) = {x^2} - {x^2}$ [from equation (1)]
$ \Rightarrow {\mathop{\rm Re}\nolimits} ({z^2}) = 0$ equation (2)
And for${\mathop{\rm Im}\nolimits} ({z^2})$,
${\mathop{\rm Im}\nolimits} ({z^2}) = 2xy$
Which can’t be $0$ as $x \ne 0 $ and $y \ne 0$
So ${\mathop{\rm Im}\nolimits} ({z^2}) \ne 0$ equation (3)
From equation (2) and equation (3) we have some conclusions as
${\mathop{\rm Re}\nolimits} ({z^2}) = 0$, ${\mathop{\rm Im}\nolimits} ({z^2}) \ne 0$ and therefore ${\mathop{\rm Re}\nolimits} ({z^2}) \ne {\mathop{\rm Im}\nolimits} ({z^2})$
Clearly, option (A) is the only correct option.
Note: $i = \sqrt { - 1} $ and ${i^2} = - 1$.
The real number $a$ is called the real part of the complex number $a + ib$; the real number $b$is called its imaginary part. To emphasize, the imaginary part does not include a factor $i$; that is, the imaginary part is $b$, not $ib$.
Complete Step by step solution:
Let $z = x + iy$, where $x \ne 0 $and $y \ne 0$
Also,
$x$ is real part of $z$ i.e. ${\mathop{\rm Re}\nolimits} (z)$ and,
$y$ is imaginary part i.e. ${\mathop{\rm Im}\nolimits} (z)$
As given in the question,
${\mathop{\rm Re}\nolimits} (z) = {\mathop{\rm Im}\nolimits} (z)$
$ \Rightarrow x = y$ equation (1)
Now, we take square of $z$,
${z^2} = {(x + iy)^2}$
${z^2} = {x^2} - {y^2} + 2ixy$
Here again we have real part and imaginary part as ${\mathop{\rm Re}\nolimits} ({z^2})$ and ${\mathop{\rm Im}\nolimits} ({z^2})$.
For ${\mathop{\rm Re}\nolimits} ({z^2})$,
${\mathop{\rm Re}\nolimits} ({z^2}) = {x^2} - {y^2}$
$ \Rightarrow {\mathop{\rm Re}\nolimits} ({z^2}) = {x^2} - {x^2}$ [from equation (1)]
$ \Rightarrow {\mathop{\rm Re}\nolimits} ({z^2}) = 0$ equation (2)
And for${\mathop{\rm Im}\nolimits} ({z^2})$,
${\mathop{\rm Im}\nolimits} ({z^2}) = 2xy$
Which can’t be $0$ as $x \ne 0 $ and $y \ne 0$
So ${\mathop{\rm Im}\nolimits} ({z^2}) \ne 0$ equation (3)
From equation (2) and equation (3) we have some conclusions as
${\mathop{\rm Re}\nolimits} ({z^2}) = 0$, ${\mathop{\rm Im}\nolimits} ({z^2}) \ne 0$ and therefore ${\mathop{\rm Re}\nolimits} ({z^2}) \ne {\mathop{\rm Im}\nolimits} ({z^2})$
Clearly, option (A) is the only correct option.
Note: $i = \sqrt { - 1} $ and ${i^2} = - 1$.
The real number $a$ is called the real part of the complex number $a + ib$; the real number $b$is called its imaginary part. To emphasize, the imaginary part does not include a factor $i$; that is, the imaginary part is $b$, not $ib$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE