Answer
Verified
448.5k+ views
Hint: First, we can see clearly that the function here mentioned is a composite function which is the combination of several functions. Then, we need to use the chain rule to find the derivative of such types of functions. Then, we can clearly see that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1 to get the desired answer.
Complete step-by-step answer:
In this question, we are supposed to find the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ .
Now, we can see clearly that the function here mentioned is a composite function which is the combination of several functions.
So, we need to use the chain rule to find the derivative of such type of functions.
Now, before proceeding for the actual function let the function b y=f(g(x)) and its differentiation by chain rule is given by:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot \dfrac{d}{dx}g\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot 1 \\
\end{align} $
So, we can clearly that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1.
Now, by applying the same rule to the given function in the question as $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ and solving it by chain rule, we get:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot \dfrac{d}{dx}\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\dfrac{d}{dx}\left[ \psi \left( h\left( g\left( x \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\dfrac{d}{dx}\left[ h\left( g\left( x \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\dfrac{d}{dx}\left[ g\left( x \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) \\
\end{align} $
So, the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ is $ {f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
Now, the answer above found can be written as $ {f}'\left( \phi o\psi ohog \right)\centerdot {\phi }'\left( \psi ohog \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
So, the correct answer is “Option A”.
Note: Now, the only mistake we can make in these types of questions is that we don’t apply the chain rule and just solve till the first bracket and give that as an answer. So, if we do the same with this question our answer will be as:
$ \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right) $ And we give it an answer which doesn’t match with any option and we will mark one of these answer which is the wrong option. So, be careful while performing differentiation of the composite functions.
Complete step-by-step answer:
In this question, we are supposed to find the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ .
Now, we can see clearly that the function here mentioned is a composite function which is the combination of several functions.
So, we need to use the chain rule to find the derivative of such type of functions.
Now, before proceeding for the actual function let the function b y=f(g(x)) and its differentiation by chain rule is given by:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot \dfrac{d}{dx}g\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot 1 \\
\end{align} $
So, we can clearly that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1.
Now, by applying the same rule to the given function in the question as $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ and solving it by chain rule, we get:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot \dfrac{d}{dx}\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\dfrac{d}{dx}\left[ \psi \left( h\left( g\left( x \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\dfrac{d}{dx}\left[ h\left( g\left( x \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\dfrac{d}{dx}\left[ g\left( x \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) \\
\end{align} $
So, the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ is $ {f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
Now, the answer above found can be written as $ {f}'\left( \phi o\psi ohog \right)\centerdot {\phi }'\left( \psi ohog \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
So, the correct answer is “Option A”.
Note: Now, the only mistake we can make in these types of questions is that we don’t apply the chain rule and just solve till the first bracket and give that as an answer. So, if we do the same with this question our answer will be as:
$ \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right) $ And we give it an answer which doesn’t match with any option and we will mark one of these answer which is the wrong option. So, be careful while performing differentiation of the composite functions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE