Answer

Verified

406.5k+ views

**Hint**: First, we can see clearly that the function here mentioned is a composite function which is the combination of several functions. Then, we need to use the chain rule to find the derivative of such types of functions. Then, we can clearly see that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1 to get the desired answer.

**:**

__Complete step-by-step answer__In this question, we are supposed to find the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ .

Now, we can see clearly that the function here mentioned is a composite function which is the combination of several functions.

So, we need to use the chain rule to find the derivative of such type of functions.

Now, before proceeding for the actual function let the function b y=f(g(x)) and its differentiation by chain rule is given by:

$ \begin{align}

& \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot \dfrac{d}{dx}g\left( x \right) \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot 1 \\

\end{align} $

So, we can clearly that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1.

Now, by applying the same rule to the given function in the question as $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ and solving it by chain rule, we get:

$ \begin{align}

& \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot \dfrac{d}{dx}\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\dfrac{d}{dx}\left[ \psi \left( h\left( g\left( x \right) \right) \right) \right] \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\dfrac{d}{dx}\left[ h\left( g\left( x \right) \right) \right] \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\dfrac{d}{dx}\left[ g\left( x \right) \right] \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\

& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) \\

\end{align} $

So, the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ is $ {f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .

Now, the answer above found can be written as $ {f}'\left( \phi o\psi ohog \right)\centerdot {\phi }'\left( \psi ohog \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .

**So, the correct answer is “Option A”.**

**Note**: Now, the only mistake we can make in these types of questions is that we don’t apply the chain rule and just solve till the first bracket and give that as an answer. So, if we do the same with this question our answer will be as:

$ \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right) $ And we give it an answer which doesn’t match with any option and we will mark one of these answer which is the wrong option. So, be careful while performing differentiation of the composite functions.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Trending doubts

What type of defect is shown by NaCl in a Stoichiometric class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

Distinguish between tetrahedral voids and octahedral class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE