
If $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ , then $ \dfrac{dy}{dx} $ is equal to
(a) $ {f}'\left( \phi o\psi ohog \right)\centerdot {\phi }'\left( \psi ohog \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $
(b) $ \dfrac{dy}{dx}\centerdot \dfrac{d\phi }{dh} $
(c) $ \dfrac{d\phi }{dh}\centerdot \dfrac{dh}{dx} $
(d) none of these
Answer
566.7k+ views
Hint: First, we can see clearly that the function here mentioned is a composite function which is the combination of several functions. Then, we need to use the chain rule to find the derivative of such types of functions. Then, we can clearly see that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1 to get the desired answer.
Complete step-by-step answer:
In this question, we are supposed to find the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ .
Now, we can see clearly that the function here mentioned is a composite function which is the combination of several functions.
So, we need to use the chain rule to find the derivative of such type of functions.
Now, before proceeding for the actual function let the function b y=f(g(x)) and its differentiation by chain rule is given by:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot \dfrac{d}{dx}g\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot 1 \\
\end{align} $
So, we can clearly that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1.
Now, by applying the same rule to the given function in the question as $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ and solving it by chain rule, we get:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot \dfrac{d}{dx}\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\dfrac{d}{dx}\left[ \psi \left( h\left( g\left( x \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\dfrac{d}{dx}\left[ h\left( g\left( x \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\dfrac{d}{dx}\left[ g\left( x \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) \\
\end{align} $
So, the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ is $ {f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
Now, the answer above found can be written as $ {f}'\left( \phi o\psi ohog \right)\centerdot {\phi }'\left( \psi ohog \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
So, the correct answer is “Option A”.
Note: Now, the only mistake we can make in these types of questions is that we don’t apply the chain rule and just solve till the first bracket and give that as an answer. So, if we do the same with this question our answer will be as:
$ \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right) $ And we give it an answer which doesn’t match with any option and we will mark one of these answer which is the wrong option. So, be careful while performing differentiation of the composite functions.
Complete step-by-step answer:
In this question, we are supposed to find the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ .
Now, we can see clearly that the function here mentioned is a composite function which is the combination of several functions.
So, we need to use the chain rule to find the derivative of such type of functions.
Now, before proceeding for the actual function let the function b y=f(g(x)) and its differentiation by chain rule is given by:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot \dfrac{d}{dx}g\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot 1 \\
\end{align} $
So, we can clearly that by chain rule the continuous differentiation of the function continues till it reaches the value of differentiation of x which is 1.
Now, by applying the same rule to the given function in the question as $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ and solving it by chain rule, we get:
$ \begin{align}
& \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot \dfrac{d}{dx}\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\dfrac{d}{dx}\left[ \psi \left( h\left( g\left( x \right) \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\dfrac{d}{dx}\left[ h\left( g\left( x \right) \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\dfrac{d}{dx}\left[ g\left( x \right) \right] \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right)\centerdot \dfrac{d}{dx}x \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) \\
\end{align} $
So, the differentiation of the function $ y=f\left[ \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right] $ is $ {f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right)\centerdot {\phi }'\left( \psi \left( h\left( g\left( x \right) \right) \right) \right)\centerdot {\psi }'\left( h\left( g\left( x \right) \right) \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
Now, the answer above found can be written as $ {f}'\left( \phi o\psi ohog \right)\centerdot {\phi }'\left( \psi ohog \right)\centerdot {h}'\left( g\left( x \right) \right)\centerdot {g}'\left( x \right) $ .
So, the correct answer is “Option A”.
Note: Now, the only mistake we can make in these types of questions is that we don’t apply the chain rule and just solve till the first bracket and give that as an answer. So, if we do the same with this question our answer will be as:
$ \dfrac{dy}{dx}={f}'\left( \phi \left( \psi \left( h\left( g\left( x \right) \right) \right) \right) \right) $ And we give it an answer which doesn’t match with any option and we will mark one of these answer which is the wrong option. So, be careful while performing differentiation of the composite functions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

