If \[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\] then prove that \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\].
Answer
328.2k+ views
Hint: Here ${{y}_{1}},{{y}_{2}},{{y}_{3}}$ are the first, second and third derivatives. First convert the given expression into simpler $y$ and $x$ terms and then start differentiating.
The given expression is,
\[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\]
This can be re-written as,
\[\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x\]
Now taking the LCM and solving, we get
\[\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x\]
On Cross multiplying, we get
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}\]
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0\]
Let \[{{y}^{\dfrac{1}{m}}}=z\], then above equation becomes
\[\Rightarrow {{z}^{2}}-2xz+1=0\]
This is a quadratic equation. The general quadratic equation is $a{{x}^{2}}+bx+c=0$, comparing the above equation with this we get
$a=1,b=-2x,c=1$
The root of this quadratic equation is given by
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the corresponding values, we get
\[z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}\]
Taking $4$ common under the root and taking out, we get
\[\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}\]
Taking out $2$ common, we get
\[\therefore z=x\pm \sqrt{{{x}^{2}}-1}\]
Substituting back the value of \[z\], we get
\[{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}\]
\[\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}\]
Powering both sides by $m$, we get
\[{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
\[\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)\]
Now differentiating the above expression with respect to \[x\], we get
\[{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
We know, $\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y)$ , so the above equation becomes,
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)\]
Applying the sum rule of differentiation, we get
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]\]
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)\]
Taking the cancelling the lie terms and taking the LCM, we get
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)\]
Cross multiplying, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)\]
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
Now substituting \[y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\] from equation (i) in the above equation, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my\]
Squaring on both sides, we get
\[\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}\]
\[\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}\]
Now differentiating the above equation with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)\]
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}\]
\[\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}\]
Dividing throughout by $'2{{y}_{1}}'$ , we get
\[\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y\]
Now again we will differentiate the above equation with respect to $'x'$, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\
\end{align}\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}\]
\[\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0\]
On regrouping, we get
\[\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
Hence proved.
Note: In the given question we are asked to prove \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
We should not confuse with the \[{{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}\]. \[{{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}\] are 1st, 2nd, and 3rd derivative of the given function.
If we directly apply differentiation to the given expression, it becomes lengthy and complicated.
The given expression is,
\[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\]
This can be re-written as,
\[\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x\]
Now taking the LCM and solving, we get
\[\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x\]
On Cross multiplying, we get
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}\]
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0\]
Let \[{{y}^{\dfrac{1}{m}}}=z\], then above equation becomes
\[\Rightarrow {{z}^{2}}-2xz+1=0\]
This is a quadratic equation. The general quadratic equation is $a{{x}^{2}}+bx+c=0$, comparing the above equation with this we get
$a=1,b=-2x,c=1$
The root of this quadratic equation is given by
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the corresponding values, we get
\[z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}\]
Taking $4$ common under the root and taking out, we get
\[\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}\]
Taking out $2$ common, we get
\[\therefore z=x\pm \sqrt{{{x}^{2}}-1}\]
Substituting back the value of \[z\], we get
\[{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}\]
\[\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}\]
Powering both sides by $m$, we get
\[{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
\[\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)\]
Now differentiating the above expression with respect to \[x\], we get
\[{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
We know, $\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y)$ , so the above equation becomes,
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)\]
Applying the sum rule of differentiation, we get
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]\]
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)\]
Taking the cancelling the lie terms and taking the LCM, we get
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)\]
Cross multiplying, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)\]
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
Now substituting \[y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\] from equation (i) in the above equation, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my\]
Squaring on both sides, we get
\[\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}\]
\[\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}\]
Now differentiating the above equation with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)\]
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}\]
\[\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}\]
Dividing throughout by $'2{{y}_{1}}'$ , we get
\[\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y\]
Now again we will differentiate the above equation with respect to $'x'$, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\
\end{align}\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}\]
\[\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0\]
On regrouping, we get
\[\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
Hence proved.
Note: In the given question we are asked to prove \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
We should not confuse with the \[{{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}\]. \[{{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}\] are 1st, 2nd, and 3rd derivative of the given function.
If we directly apply differentiation to the given expression, it becomes lengthy and complicated.
Last updated date: 28th May 2023
•
Total views: 328.2k
•
Views today: 3.88k
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
