Answer
Verified
496.2k+ views
Hint: Here ${{y}_{1}},{{y}_{2}},{{y}_{3}}$ are the first, second and third derivatives. First convert the given expression into simpler $y$ and $x$ terms and then start differentiating.
The given expression is,
\[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\]
This can be re-written as,
\[\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x\]
Now taking the LCM and solving, we get
\[\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x\]
On Cross multiplying, we get
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}\]
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0\]
Let \[{{y}^{\dfrac{1}{m}}}=z\], then above equation becomes
\[\Rightarrow {{z}^{2}}-2xz+1=0\]
This is a quadratic equation. The general quadratic equation is $a{{x}^{2}}+bx+c=0$, comparing the above equation with this we get
$a=1,b=-2x,c=1$
The root of this quadratic equation is given by
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the corresponding values, we get
\[z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}\]
Taking $4$ common under the root and taking out, we get
\[\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}\]
Taking out $2$ common, we get
\[\therefore z=x\pm \sqrt{{{x}^{2}}-1}\]
Substituting back the value of \[z\], we get
\[{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}\]
\[\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}\]
Powering both sides by $m$, we get
\[{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
\[\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)\]
Now differentiating the above expression with respect to \[x\], we get
\[{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
We know, $\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y)$ , so the above equation becomes,
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)\]
Applying the sum rule of differentiation, we get
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]\]
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)\]
Taking the cancelling the lie terms and taking the LCM, we get
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)\]
Cross multiplying, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)\]
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
Now substituting \[y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\] from equation (i) in the above equation, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my\]
Squaring on both sides, we get
\[\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}\]
\[\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}\]
Now differentiating the above equation with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)\]
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}\]
\[\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}\]
Dividing throughout by $'2{{y}_{1}}'$ , we get
\[\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y\]
Now again we will differentiate the above equation with respect to $'x'$, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\
\end{align}\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}\]
\[\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0\]
On regrouping, we get
\[\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
Hence proved.
Note: In the given question we are asked to prove \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
We should not confuse with the \[{{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}\]. \[{{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}\] are 1st, 2nd, and 3rd derivative of the given function.
If we directly apply differentiation to the given expression, it becomes lengthy and complicated.
The given expression is,
\[{{y}^{\dfrac{1}{m}}}+{{y}^{\dfrac{-1}{m}}}=2x\]
This can be re-written as,
\[\Rightarrow {{y}^{\dfrac{1}{m}}}+\dfrac{1}{{{y}^{\dfrac{1}{m}}}}=2x\]
Now taking the LCM and solving, we get
\[\Rightarrow \dfrac{{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1}{{{y}^{\dfrac{1}{m}}}}=2x\]
On Cross multiplying, we get
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}+1=2x{{y}^{\dfrac{1}{m}}}\]
\[\Rightarrow {{\left( {{y}^{\dfrac{1}{m}}} \right)}^{2}}-2x{{y}^{\dfrac{1}{m}}}+1=0\]
Let \[{{y}^{\dfrac{1}{m}}}=z\], then above equation becomes
\[\Rightarrow {{z}^{2}}-2xz+1=0\]
This is a quadratic equation. The general quadratic equation is $a{{x}^{2}}+bx+c=0$, comparing the above equation with this we get
$a=1,b=-2x,c=1$
The root of this quadratic equation is given by
$z=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Substituting the corresponding values, we get
\[z=\dfrac{-(-2x)\pm \sqrt{{{\left( -2x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow z=\dfrac{2x\pm \sqrt{4{{x}^{2}}-4}}{2}\]
Taking $4$ common under the root and taking out, we get
\[\Rightarrow z=\dfrac{2x\pm 2\sqrt{{{x}^{2}}-1}}{2}\]
Taking out $2$ common, we get
\[\therefore z=x\pm \sqrt{{{x}^{2}}-1}\]
Substituting back the value of \[z\], we get
\[{{y}^{\dfrac{1}{m}}}=z=x\pm \sqrt{{{x}^{2}}-1}\]
\[\Rightarrow {{y}^{\dfrac{1}{m}}}=x\pm \sqrt{{{x}^{2}}-1}\]
Powering both sides by $m$, we get
\[{{\left( {{y}^{\dfrac{1}{m}}} \right)}^{m}}={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
\[\therefore y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}.........(i)\]
Now differentiating the above expression with respect to \[x\], we get
\[{{y}_{1}}=\dfrac{d}{dx}{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
We know, $\dfrac{d}{dx}({{y}^{n}})=n{{y}^{n-1}}\dfrac{d}{dx}(y)$ , so the above equation becomes,
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\dfrac{d}{dx}\left( x\pm \sqrt{{{x}^{2}}-1} \right)\]
Applying the sum rule of differentiation, we get
\[{{y}_{1}}=\dfrac{dy}{dx}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\left[ \dfrac{d}{dx}\left( x \right)\pm \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right) \right]\]
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( 1\pm \dfrac{1}{2}\times \dfrac{1}{\sqrt{{{x}^{2}}-1}}\times 2x \right)\]
Taking the cancelling the lie terms and taking the LCM, we get
\[\Rightarrow {{y}_{1}}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \dfrac{\sqrt{{{x}^{2}}-1}\pm x}{\sqrt{{{x}^{2}}-1}} \right)\]
Cross multiplying, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m-1}}\times \left( \sqrt{{{x}^{2}}-1}\pm x \right)\]
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=m{{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\]
Now substituting \[y={{\left( x\pm \sqrt{{{x}^{2}}-1} \right)}^{m}}\] from equation (i) in the above equation, we get
\[\Rightarrow {{y}_{1}}\sqrt{{{x}^{2}}-1}=my\]
Squaring on both sides, we get
\[\Rightarrow {{\left( {{y}_{1}}\sqrt{{{x}^{2}}-1} \right)}^{2}}={{\left( my \right)}^{2}}\]
\[\Rightarrow {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right)={{m}^{2}}{{y}^{2}}\]
Now differentiating the above equation with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}^{2}\left( {{x}^{2}}-1 \right) \right)=\dfrac{d}{dx}\left( {{m}^{2}}{{y}^{2}} \right)\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}^{2}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{1}}^{2} \right)={{m}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)\]
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}\dfrac{d}{dx}\left( {{y}_{1}} \right)={{m}^{2}}2y\dfrac{d}{dx}(y)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}^{2}2x+\left( {{x}^{2}}-1 \right)2{{y}_{1}}{{y}_{2}}={{m}^{2}}2y{{y}_{1}}\]
\[\Rightarrow 2{{y}_{1}}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}2y{{y}_{1}}\]
Dividing throughout by $'2{{y}_{1}}'$ , we get
\[\Rightarrow {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}}={{m}^{2}}y\]
Now again we will differentiate the above equation with respect to $'x'$, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x+\left( {{x}^{2}}-1 \right){{y}_{2}} \right)=\dfrac{d}{dx}\left( {{m}^{2}}y \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}_{1}}x \right)+\dfrac{d}{dx}\left( \left( {{x}^{2}}-1 \right){{y}_{2}} \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right) \\
\end{align}\]
Now we know, \[\dfrac{d}{dx}\left( u.v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula, we get
\[\Rightarrow {{y}_{1}}\dfrac{d}{dx}\left( x \right)+x\dfrac{d}{dx}\left( {{y}_{1}} \right)+\left( {{x}^{2}}-1 \right)\dfrac{d}{dx}\left( {{y}_{2}} \right)+{{y}_{2}}\dfrac{d}{dx}\left( {{x}^{2}}-1 \right)={{m}^{2}}\dfrac{d}{dx}\left( y \right)\]
Now we know, ${{y}_{1}}=\dfrac{dy}{dx},{{y}_{2}}=\dfrac{d{{y}_{1}}}{dx}$ , so the above equation becomes,
\[\Rightarrow {{y}_{1}}(1)+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x={{m}^{2}}{{y}_{1}}\]
\[\Rightarrow {{y}_{1}}+x{{y}_{2}}+({{x}^{2}}-1){{y}_{3}}+{{y}_{2}}2x-{{m}^{2}}{{y}_{1}}=0\]
On regrouping, we get
\[\Rightarrow ({{x}^{2}}-1){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
Hence proved.
Note: In the given question we are asked to prove \[\left( {{x}^{2}}-1 \right){{y}_{3}}+3x{{y}_{2}}+\left( 1-{{m}^{2}} \right){{y}_{1}}=0\]
We should not confuse with the \[{{y}_{1}},{{y}_{2}}\,and\,{{y}_{3}}\]. \[{{y}_{1}},{{y}_{2}}\, and \,{{y}_{3}}\] are 1st, 2nd, and 3rd derivative of the given function.
If we directly apply differentiation to the given expression, it becomes lengthy and complicated.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it