
If \[\;y = y(x)\] is the solution of the differential equation \[\,\left( {\dfrac{{2 + \sin x}}{{y + 1}}} \right)\dfrac{{dy}}{{dx}} + \cos x = 0\].
With \[y(0) = 1\] then \[y(\dfrac{\pi} {2} )\;\_\_\].
Answer
621.6k+ views
Hint: Separate dy and dx then integrate the equation. We use the variable separable method.
Given :-
\[\left( {\dfrac{{2 + \sin x}}{{y + 1}}} \right)\dfrac{{dy}}{{dx}} + \cos x = 0\]
After transposing we get,
\[\left( {\dfrac{1}{{y + 1}}} \right)dy = - \left( {\dfrac{{\cos x}}{{2 + \sin x}}} \right)dx\]
On integrating we get,
\[\int {\left( {\dfrac{1}{{y + 1}}} \right)dy = - \int {\left( {\dfrac{{\cos x}}{{2 + \sin x}}} \right)dx} } \,\,\,...({\text{i}})\]
First we will solve this,
\[\int {\left( {\dfrac{{\cos x}}{{2 + \sin x}}} \right)dx} \]
Let \[\sin x = t\]
Then \[\cos xdx = dt\]
From the above two equations the integral becomes,
\[\int {\left( {\dfrac{1}{{2 + t}}} \right)dt = \ln (2 + t)} \,\, + \ln {c_1}\]
On putting the value of \[{\text{ }}t\],
\[\log (2 + t) = \log (2 + \sin x)\]
On putting these values in equation (i), we get equation (i) as ,
\[\ln (y + 1) = - \ln (2 + \sin x) + \ln c\]
Then we got an equation as,
\[y = \dfrac{c}{{2 + \sin x}}\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......(\ln a - \ln b = \ln \dfrac{a}{b})\]
From the question,
\[y(0) = 1\]
So,
\[
{\text{1 = }}\dfrac{c}{{2 + 0}} - 1\,\,\,\,\,\,\,\,\,\,\,......(\sin 0 = 0) \\
c = 4 \\
\]
The equation is ,
\[y = \dfrac{4}{{2 + \sin x}}\, - 1\,\,\,\]
We have asked to find \[y\left( {\dfrac{\pi }{2}} \right)\],
So,
\[y\left( {\dfrac{\pi }{2}} \right) = \,\dfrac{4}{{2 + 1}}\, - 1 = \dfrac{1}{3}\,\,\,\,\,\,\,\,\,......(\sin \left( {\dfrac{\pi }{2}} \right) = 1)\]
Hence the correct option is A.
Note: In these types of questions first open the integral by variable separation method then when the equation is obtained, get the value of constant from the information provided in the question then after getting completely , get the answer which is asked in question by putting the value of constant.
Given :-
\[\left( {\dfrac{{2 + \sin x}}{{y + 1}}} \right)\dfrac{{dy}}{{dx}} + \cos x = 0\]
After transposing we get,
\[\left( {\dfrac{1}{{y + 1}}} \right)dy = - \left( {\dfrac{{\cos x}}{{2 + \sin x}}} \right)dx\]
On integrating we get,
\[\int {\left( {\dfrac{1}{{y + 1}}} \right)dy = - \int {\left( {\dfrac{{\cos x}}{{2 + \sin x}}} \right)dx} } \,\,\,...({\text{i}})\]
First we will solve this,
\[\int {\left( {\dfrac{{\cos x}}{{2 + \sin x}}} \right)dx} \]
Let \[\sin x = t\]
Then \[\cos xdx = dt\]
From the above two equations the integral becomes,
\[\int {\left( {\dfrac{1}{{2 + t}}} \right)dt = \ln (2 + t)} \,\, + \ln {c_1}\]
On putting the value of \[{\text{ }}t\],
\[\log (2 + t) = \log (2 + \sin x)\]
On putting these values in equation (i), we get equation (i) as ,
\[\ln (y + 1) = - \ln (2 + \sin x) + \ln c\]
Then we got an equation as,
\[y = \dfrac{c}{{2 + \sin x}}\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......(\ln a - \ln b = \ln \dfrac{a}{b})\]
From the question,
\[y(0) = 1\]
So,
\[
{\text{1 = }}\dfrac{c}{{2 + 0}} - 1\,\,\,\,\,\,\,\,\,\,\,......(\sin 0 = 0) \\
c = 4 \\
\]
The equation is ,
\[y = \dfrac{4}{{2 + \sin x}}\, - 1\,\,\,\]
We have asked to find \[y\left( {\dfrac{\pi }{2}} \right)\],
So,
\[y\left( {\dfrac{\pi }{2}} \right) = \,\dfrac{4}{{2 + 1}}\, - 1 = \dfrac{1}{3}\,\,\,\,\,\,\,\,\,......(\sin \left( {\dfrac{\pi }{2}} \right) = 1)\]
Hence the correct option is A.
Note: In these types of questions first open the integral by variable separation method then when the equation is obtained, get the value of constant from the information provided in the question then after getting completely , get the answer which is asked in question by putting the value of constant.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

