If $y = {x^x}$, prove that $\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0$ .
Last updated date: 29th Mar 2023
•
Total views: 308.1k
•
Views today: 5.85k
Answer
308.1k+ views
Hint: In this question first we take log both side and simply differentiate expression $y = {x^x}$ with respect to $x$ and find the value of $\dfrac{{dy}}{{dx}}$ & $\dfrac{{{d^2}y}}{{d{x^2}}}$ after that value of $\dfrac{{dy}}{{dx}}$ &$\dfrac{{{d^2}y}}{{d{x^2}}}$ and put left hand side of differential expression $\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0$.
Let $\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0$ ……. (1)
Consider $y = {x^x}$
Take log both side
$\log y = \log {x^x}$
Apply log property $\left( {\log {a^b} = b\log a} \right)$
$\log y = x\log x$
Differentiate with respect to $x$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x$
$\dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right)$ ……. (2)
Differentiate equation (2) with respect to $x$
$\dfrac{{{d^2}y}}{{d{x^2}}} = y\left( {0 + \dfrac{1}{x}} \right) + \left( {1 + \log x} \right)\dfrac{{dy}}{{dx}}$
Put value of $\dfrac{{dy}}{{dx}}$ in above expression
$\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{y}{x} + y{\left( {1 + \log x} \right)^2}$…….(3)
Value of $\dfrac{{dy}}{{dx}}$ and $\dfrac{{{d^2}y}}{{d{x^2}}}$ from equation 2 and 3 put into equation 1
$\dfrac{y}{x} + y{\left( {1 + \log x} \right)^2} - \dfrac{1}{y}{\left( {y\left( {1 + \log x} \right)} \right)^2} - \dfrac{y}{x} = 0$
$\dfrac{y}{x} + y{\left( {1 + \log x} \right)^2} - y{\left( {1 + \log x} \right)^2} - \dfrac{y}{x} = 0$
Here we can see that after solving left hand side will be zero
So L.H.S=R.H.S
Hence proved
Note: In this question we use log property $\log {a^b} = b\log a$ and also we use some basic differentiation formula like
$
\dfrac{d}{{dx}}\log x = \dfrac{1}{x} \\
\\
$
$\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}v + v\dfrac{d}{{dx}}u$ here $u$ and $v$ are function of real variable $x$ and this formula also known as product rule for derivatives.
$\dfrac{d}{{dx}}x = 1$
Let $\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{1}{y}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} - \dfrac{y}{x} = 0$ ……. (1)
Consider $y = {x^x}$
Take log both side
$\log y = \log {x^x}$
Apply log property $\left( {\log {a^b} = b\log a} \right)$
$\log y = x\log x$
Differentiate with respect to $x$
$\dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x$
$\dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right)$ ……. (2)
Differentiate equation (2) with respect to $x$
$\dfrac{{{d^2}y}}{{d{x^2}}} = y\left( {0 + \dfrac{1}{x}} \right) + \left( {1 + \log x} \right)\dfrac{{dy}}{{dx}}$
Put value of $\dfrac{{dy}}{{dx}}$ in above expression
$\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{y}{x} + y{\left( {1 + \log x} \right)^2}$…….(3)
Value of $\dfrac{{dy}}{{dx}}$ and $\dfrac{{{d^2}y}}{{d{x^2}}}$ from equation 2 and 3 put into equation 1
$\dfrac{y}{x} + y{\left( {1 + \log x} \right)^2} - \dfrac{1}{y}{\left( {y\left( {1 + \log x} \right)} \right)^2} - \dfrac{y}{x} = 0$
$\dfrac{y}{x} + y{\left( {1 + \log x} \right)^2} - y{\left( {1 + \log x} \right)^2} - \dfrac{y}{x} = 0$
Here we can see that after solving left hand side will be zero
So L.H.S=R.H.S
Hence proved
Note: In this question we use log property $\log {a^b} = b\log a$ and also we use some basic differentiation formula like
$
\dfrac{d}{{dx}}\log x = \dfrac{1}{x} \\
\\
$
$\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}v + v\dfrac{d}{{dx}}u$ here $u$ and $v$ are function of real variable $x$ and this formula also known as product rule for derivatives.
$\dfrac{d}{{dx}}x = 1$
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
