If $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then show that $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Answer
282k+ views
Hint: In order to solve the equation, check that where the term $y$ has repeated and, then mark them as $y$ , we will get a shorter equation. Then to remove the square root, square both the sides. Then differentiate the terms with respect to $x$ and separate the variables on one side.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
