If $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then show that $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Last updated date: 22nd Mar 2023
•
Total views: 206.1k
•
Views today: 5.84k
Answer
206.1k+ views
Hint: In order to solve the equation, check that where the term $y$ has repeated and, then mark them as $y$ , we will get a shorter equation. Then to remove the square root, square both the sides. Then differentiate the terms with respect to $x$ and separate the variables on one side.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
