Answer
Verified
392.1k+ views
Hint: In order to solve the equation, check that where the term $y$ has repeated and, then mark them as $y$ , we will get a shorter equation. Then to remove the square root, square both the sides. Then differentiate the terms with respect to $x$ and separate the variables on one side.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Formula used:
1. \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\]
2. \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
3. \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\]
Complete step by step solution:
We are given the equation $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
We can see that after the second root, from the third root $y$ is getting repeated, as $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $.
So, writing $\sqrt {x + \sqrt {y + .........\infty } } $ as $y$ , we get the equation as:
$
y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \\
\Rightarrow y = \sqrt {x + \sqrt {y + y} } \\
$
It can be written as:
$
y = \sqrt {x + \sqrt {y + y} } \\
\Rightarrow y = \sqrt {x + \sqrt {2y} } \\
$
Squaring both the sides, in order to remove the square root, as we know that ${\left( {\sqrt x } \right)^2} = x$.
So,
$
y = \sqrt {x + \sqrt {2y} } \\
\Rightarrow {\left( y \right)^2} = {\left( {\sqrt {x + \sqrt {2y} } } \right)^2} \\
\Rightarrow {y^2} = x + \sqrt {2y} \\
$
Subtracting both the sides of the above equation by $x$:
$
{y^2} = x + \sqrt {2y} \\
\Rightarrow {y^2} - x = x + \sqrt {2y} - x \\
\Rightarrow {y^2} - x = \sqrt {2y} \\
$
Since, we have one more square root on the right side, so squaring both the sides, and we get:
$
{y^2} - x = \sqrt {2y} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = {\left( {\sqrt {2y} } \right)^2} \\
\Rightarrow {\left( {{y^2} - x} \right)^2} = 2y \\
$
Opening the brackets using ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$.
$
{\left( {{y^2} - x} \right)^2} = 2y \\
= > {y^4} + {x^2} - 2x{y^2} = 2y \\
$
Subtracting both the sides by $2y$ , we get:
$
{y^4} + {x^2} - 2x{y^2} = 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 2y - 2y \\
\Rightarrow {y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
$
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to $x$ :
\[
{y^4} + {x^2} - 2x{y^2} - 2y = 0 \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = \dfrac{{d0}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\]
Splitting the terms for differentiation:
\[
\dfrac{{d\left( {{y^4} + {x^2} - 2x{y^2} - 2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\]
Taking out the constants from the parenthesis:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\
\Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\] …….(A)
We would solve each operand separately:
Starting with \[\dfrac{{d{y^4}}}{{dx}}\].
Since, we know that \[\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}\].
So, from this we get: \[\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}\]. ………………..(1)
Then we have \[\dfrac{{d{x^2}}}{{dx}}\] :
Since, we know that \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\].
So, from this we get: \[\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x\]. ………………..(2)
Then we have \[\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}\] :
Since, we know that it is in product form, and it can differentiated as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\].
Comparing \[\left( {uv} \right)\] with \[\left( {x{y^2}} \right)\], we get \[u = x,v = {y^2}\]
So, differentiating it from the product rule, we get:
\[
\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\]. ………………..(3)
Then we have \[\dfrac{{dy}}{{dx}}\] :
Since, we can see that it cannot be further simplified.
Therefore, it is \[\dfrac{{dy}}{{dx}}\] only ………………..(4)
Substituting (1), (2), (3) and (4) in A, we get:
\[
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Opening the parenthesis above, and we get:
\[
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
\]
Taking \[2\] common:
\[2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0\]
Dividing both the sides by \[2\]:
\[
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\]
Taking coefficient of \[\dfrac{{dy}}{{dx}}\] in one parenthesis:
\[
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\]
Adding both the sides by \[{y^2}\] and subtracting \[x\] , we get:
\[
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\]
Dividing both the sides by \[\left( {2{y^3} - 2xy - 1} \right)\] , and we get:
\[
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\]
Which is proved.
Therefore, if $y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } $ , then $\dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{2{y^3} - 2xy - 1}}$.
Hence, proved.
Note:
1. Always preferred to go step by step for ease, otherwise there is a huge chance of mistakes to arise.
2. It’s important to square the terms to remove the roots, otherwise, it would become much more complicated to differentiate.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE