
If \[y = {\log ^n}x\] where \[{\log ^n}\] means \[\log .\log .\log \] repeated \[n\] times, then find the value of \[x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}} = \]
Answer
519k+ views
Hint: Here we are given to find the value of differentiation of log function and then find the product of various log functions and their differentiation. To do this we first find the differentiation of log for powers two and three. Then we use patterns formed in those values to get the differentiation of log for power \[n\] . Then we find the value of the given expression by putting the value of differentiation of log for power \[n\] in it.
Formula used: We do the differential of \[\dfrac{{da(b(x))}}{{dx}}\] as
\[\dfrac{{da(b(x))}}{{dx}} = \dfrac{{da(b(x))}}{{db(x)}} \cdot \dfrac{{db(x)}}{{dx}}\]
And
\[\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}\]
Complete step-by-step solution:
We are given \[y = {\log ^n}x\]. We have to find the value of \[\dfrac{{dy}}{{dx}}\]. Since it is lengthy to find the differentiation directly for power \[n\], we first find it for,
\[n = 2\],
\[y = {\log ^2}x\]
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d{{\log }^2}x}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\log (\log x)}}{{dx}} \\
\]
We know that, \[\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}\]and \[\dfrac{{da(b(x))}}{{dx}} = \dfrac{{da(b(x))}}{{db(x)}} \cdot \dfrac{{db(x)}}{{dx}}\], using this we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\log x}} \cdot \dfrac{1}{x}\]
Same for \[n = 3\], we get
\[
y = {\log ^3}x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d{{\log }^3}x}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\log (\log (\log x))}}{{dx}} \\
\]
Using \[\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}\] and \[\dfrac{{da(b(x))}}{{dx}} = \dfrac{{da(b(x))}}{{db(x)}} \cdot \dfrac{{db(x)}}{{dx}}\] ,we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }^2}x}}\dfrac{1}{{\log x}} \cdot \dfrac{1}{x}\]
Same way we can say for \[n\] as,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }^n}x}} \cdot \dfrac{1}{{{{\log }^{n - 1}}x}}.......\dfrac{1}{{\log x}} \cdot \dfrac{1}{x}\]
Now using this we get the value of \[x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}}\] as,
\[
\Rightarrow x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}} = \left( {x.\log x.{{\log }^2}x.{{\log }^3}x - - - {{\log }^{n - 1}}x} \right)\left( {\dfrac{1}{{{{\log }^n}x}} \cdot \dfrac{1}{{{{\log }^{n - 1}}x}}.......\dfrac{1}{{\log x}} \cdot \dfrac{1}{x}} \right) \\
\Rightarrow x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}} =\dfrac{1}{{\log ^n}x} \]
Hence we get the answer as \[\dfrac{1}{{\log ^n}x}\].
Note: This is to note that here we have done the differentiation of a function having any general power using the method of trial. We have found a pattern in differentiation by putting some smaller powers. Had a pattern been not found, we would have used any other method here. We could have also found the differentiation directly, but it required bigger calculations. Hence we have saved some time here. We should always look for such alternate methods as they make calculations easier.
Formula used: We do the differential of \[\dfrac{{da(b(x))}}{{dx}}\] as
\[\dfrac{{da(b(x))}}{{dx}} = \dfrac{{da(b(x))}}{{db(x)}} \cdot \dfrac{{db(x)}}{{dx}}\]
And
\[\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}\]
Complete step-by-step solution:
We are given \[y = {\log ^n}x\]. We have to find the value of \[\dfrac{{dy}}{{dx}}\]. Since it is lengthy to find the differentiation directly for power \[n\], we first find it for,
\[n = 2\],
\[y = {\log ^2}x\]
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d{{\log }^2}x}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\log (\log x)}}{{dx}} \\
\]
We know that, \[\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}\]and \[\dfrac{{da(b(x))}}{{dx}} = \dfrac{{da(b(x))}}{{db(x)}} \cdot \dfrac{{db(x)}}{{dx}}\], using this we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\log x}} \cdot \dfrac{1}{x}\]
Same for \[n = 3\], we get
\[
y = {\log ^3}x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d{{\log }^3}x}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\log (\log (\log x))}}{{dx}} \\
\]
Using \[\dfrac{{d\log x}}{{dx}} = \dfrac{1}{x}\] and \[\dfrac{{da(b(x))}}{{dx}} = \dfrac{{da(b(x))}}{{db(x)}} \cdot \dfrac{{db(x)}}{{dx}}\] ,we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }^2}x}}\dfrac{1}{{\log x}} \cdot \dfrac{1}{x}\]
Same way we can say for \[n\] as,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }^n}x}} \cdot \dfrac{1}{{{{\log }^{n - 1}}x}}.......\dfrac{1}{{\log x}} \cdot \dfrac{1}{x}\]
Now using this we get the value of \[x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}}\] as,
\[
\Rightarrow x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}} = \left( {x.\log x.{{\log }^2}x.{{\log }^3}x - - - {{\log }^{n - 1}}x} \right)\left( {\dfrac{1}{{{{\log }^n}x}} \cdot \dfrac{1}{{{{\log }^{n - 1}}x}}.......\dfrac{1}{{\log x}} \cdot \dfrac{1}{x}} \right) \\
\Rightarrow x.\log x.{\log ^2}x.{\log ^3}x - - - {\log ^{n - 1}}x.\dfrac{{dy}}{{dx}} =\dfrac{1}{{\log ^n}x} \]
Hence we get the answer as \[\dfrac{1}{{\log ^n}x}\].
Note: This is to note that here we have done the differentiation of a function having any general power using the method of trial. We have found a pattern in differentiation by putting some smaller powers. Had a pattern been not found, we would have used any other method here. We could have also found the differentiation directly, but it required bigger calculations. Hence we have saved some time here. We should always look for such alternate methods as they make calculations easier.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

