
If $ x={{\sin }^{-1}}(\sin 10) $ and $ y={{\cos }^{-1}}(\cos 10) $ , then y – x is equals to
Answer
592.5k+ views
Hint: To solve this question we will take the help of graph of functions $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ . What we will do is we will check on which line the value 10 on graph $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ as graphs of functions $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ are continuous.
Then, finally we will evaluate the value of y and x and hence find y – x .
Complete step-by-step answer:
Before we solve the question to get value of y – x ,
Let us see the properties and graph of function $ y={{\sin }^{-1}}(\operatorname{sinx}) $ .
$ {{\sin }^{-1}}(\operatorname{sinx})=-\pi -x;\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} $ ,
$ =x;\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} $ ,
$ =\pi ;\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} $ .
And, graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ is given as ,
Let us see the properties and graph of the function $ y={{\cos }^{-1}}(cosx) $ .
$ {{\cos }^{-1}}(cosx)=-x;-\pi \le x\le 0 $
$ =x;0\le x\le \pi $
$ =2\pi -x;\pi \le x\le 2\pi $
And, graph of $ y={{\cos }^{-1}}(cosx) $ is given as ,
Now, let us solve for $ x={{\sin }^{-1}}(\sin 10) $ first,
As we see that, $ \dfrac{5\pi }{2}\le 10\le \dfrac{7\pi }{2} $
So, we can say that 10 lies on line $ 3\pi -x $ , so 10 will satisfy the equation $ y=3\pi -x $
Putting x = 10 in $ y=3\pi -x $ , we get
$ y=3\pi -10 $ .
Or, $ 3\pi -10={{\sin }^{-1}}(\sin 10) $ …… ( i )
Now, let us solve for $ y={{\cos }^{-1}}(cos10) $ ,
As we see that, $ 3\pi \le 10\le 4\pi $ ,
So, we can say that 10 lies on line $ 4\pi -x $ , so 10 will satisfy the equation $ y=4\pi -x $
Putting x = 10 in $ y=4\pi -x $ , we get
$ y=4\pi -10 $ .
Or, $ 4\pi -10={{\cos }^{-1}}(cos10) $ …..( ii )
Now, we have to find the value of, y – x that is $ {{\cos }^{-1}}(cos10)-{{\sin }^{-1}}(\sin 10) $ ,which is equals to
$ y-x=(4\pi -10)-(3\pi -10) $ .
Note: Graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ are very important function and graphs should be remembered while solving questions based on inverse trigonometric functions. The value of input should be checked on which line of the function does it lie carefully as it may change the output of the function.
Then, finally we will evaluate the value of y and x and hence find y – x .
Complete step-by-step answer:
Before we solve the question to get value of y – x ,
Let us see the properties and graph of function $ y={{\sin }^{-1}}(\operatorname{sinx}) $ .
$ {{\sin }^{-1}}(\operatorname{sinx})=-\pi -x;\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} $ ,
$ =x;\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} $ ,
$ =\pi ;\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} $ .
And, graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ is given as ,
Let us see the properties and graph of the function $ y={{\cos }^{-1}}(cosx) $ .
$ {{\cos }^{-1}}(cosx)=-x;-\pi \le x\le 0 $
$ =x;0\le x\le \pi $
$ =2\pi -x;\pi \le x\le 2\pi $
And, graph of $ y={{\cos }^{-1}}(cosx) $ is given as ,
Now, let us solve for $ x={{\sin }^{-1}}(\sin 10) $ first,
As we see that, $ \dfrac{5\pi }{2}\le 10\le \dfrac{7\pi }{2} $
So, we can say that 10 lies on line $ 3\pi -x $ , so 10 will satisfy the equation $ y=3\pi -x $
Putting x = 10 in $ y=3\pi -x $ , we get
$ y=3\pi -10 $ .
Or, $ 3\pi -10={{\sin }^{-1}}(\sin 10) $ …… ( i )
Now, let us solve for $ y={{\cos }^{-1}}(cos10) $ ,
As we see that, $ 3\pi \le 10\le 4\pi $ ,
So, we can say that 10 lies on line $ 4\pi -x $ , so 10 will satisfy the equation $ y=4\pi -x $
Putting x = 10 in $ y=4\pi -x $ , we get
$ y=4\pi -10 $ .
Or, $ 4\pi -10={{\cos }^{-1}}(cos10) $ …..( ii )
Now, we have to find the value of, y – x that is $ {{\cos }^{-1}}(cos10)-{{\sin }^{-1}}(\sin 10) $ ,which is equals to
$ y-x=(4\pi -10)-(3\pi -10) $ .
Note: Graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ are very important function and graphs should be remembered while solving questions based on inverse trigonometric functions. The value of input should be checked on which line of the function does it lie carefully as it may change the output of the function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

