
If $ x={{\sin }^{-1}}(\sin 10) $ and $ y={{\cos }^{-1}}(\cos 10) $ , then y – x is equals to
Answer
577.8k+ views
Hint: To solve this question we will take the help of graph of functions $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ . What we will do is we will check on which line the value 10 on graph $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ as graphs of functions $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ are continuous.
Then, finally we will evaluate the value of y and x and hence find y – x .
Complete step-by-step answer:
Before we solve the question to get value of y – x ,
Let us see the properties and graph of function $ y={{\sin }^{-1}}(\operatorname{sinx}) $ .
$ {{\sin }^{-1}}(\operatorname{sinx})=-\pi -x;\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} $ ,
$ =x;\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} $ ,
$ =\pi ;\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} $ .
And, graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ is given as ,
Let us see the properties and graph of the function $ y={{\cos }^{-1}}(cosx) $ .
$ {{\cos }^{-1}}(cosx)=-x;-\pi \le x\le 0 $
$ =x;0\le x\le \pi $
$ =2\pi -x;\pi \le x\le 2\pi $
And, graph of $ y={{\cos }^{-1}}(cosx) $ is given as ,
Now, let us solve for $ x={{\sin }^{-1}}(\sin 10) $ first,
As we see that, $ \dfrac{5\pi }{2}\le 10\le \dfrac{7\pi }{2} $
So, we can say that 10 lies on line $ 3\pi -x $ , so 10 will satisfy the equation $ y=3\pi -x $
Putting x = 10 in $ y=3\pi -x $ , we get
$ y=3\pi -10 $ .
Or, $ 3\pi -10={{\sin }^{-1}}(\sin 10) $ …… ( i )
Now, let us solve for $ y={{\cos }^{-1}}(cos10) $ ,
As we see that, $ 3\pi \le 10\le 4\pi $ ,
So, we can say that 10 lies on line $ 4\pi -x $ , so 10 will satisfy the equation $ y=4\pi -x $
Putting x = 10 in $ y=4\pi -x $ , we get
$ y=4\pi -10 $ .
Or, $ 4\pi -10={{\cos }^{-1}}(cos10) $ …..( ii )
Now, we have to find the value of, y – x that is $ {{\cos }^{-1}}(cos10)-{{\sin }^{-1}}(\sin 10) $ ,which is equals to
$ y-x=(4\pi -10)-(3\pi -10) $ .
Note: Graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ are very important function and graphs should be remembered while solving questions based on inverse trigonometric functions. The value of input should be checked on which line of the function does it lie carefully as it may change the output of the function.
Then, finally we will evaluate the value of y and x and hence find y – x .
Complete step-by-step answer:
Before we solve the question to get value of y – x ,
Let us see the properties and graph of function $ y={{\sin }^{-1}}(\operatorname{sinx}) $ .
$ {{\sin }^{-1}}(\operatorname{sinx})=-\pi -x;\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} $ ,
$ =x;\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} $ ,
$ =\pi ;\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} $ .
And, graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ is given as ,
Let us see the properties and graph of the function $ y={{\cos }^{-1}}(cosx) $ .
$ {{\cos }^{-1}}(cosx)=-x;-\pi \le x\le 0 $
$ =x;0\le x\le \pi $
$ =2\pi -x;\pi \le x\le 2\pi $
And, graph of $ y={{\cos }^{-1}}(cosx) $ is given as ,
Now, let us solve for $ x={{\sin }^{-1}}(\sin 10) $ first,
As we see that, $ \dfrac{5\pi }{2}\le 10\le \dfrac{7\pi }{2} $
So, we can say that 10 lies on line $ 3\pi -x $ , so 10 will satisfy the equation $ y=3\pi -x $
Putting x = 10 in $ y=3\pi -x $ , we get
$ y=3\pi -10 $ .
Or, $ 3\pi -10={{\sin }^{-1}}(\sin 10) $ …… ( i )
Now, let us solve for $ y={{\cos }^{-1}}(cos10) $ ,
As we see that, $ 3\pi \le 10\le 4\pi $ ,
So, we can say that 10 lies on line $ 4\pi -x $ , so 10 will satisfy the equation $ y=4\pi -x $
Putting x = 10 in $ y=4\pi -x $ , we get
$ y=4\pi -10 $ .
Or, $ 4\pi -10={{\cos }^{-1}}(cos10) $ …..( ii )
Now, we have to find the value of, y – x that is $ {{\cos }^{-1}}(cos10)-{{\sin }^{-1}}(\sin 10) $ ,which is equals to
$ y-x=(4\pi -10)-(3\pi -10) $ .
Note: Graph of $ y={{\sin }^{-1}}(\operatorname{sinx}) $ and $ y={{\cos }^{-1}}(cosx) $ are very important function and graphs should be remembered while solving questions based on inverse trigonometric functions. The value of input should be checked on which line of the function does it lie carefully as it may change the output of the function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

