If \[x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}\] and $z=p{{\omega }^{2}}+q\omega $ where \[\omega \] is a complex cube root of unity, then $xyz$ =
A. ${{p}^{3}}+{{q}^{3}}$
B. \[{{p}^{2}}-pq+{{q}^{2}}\]
C. \[1+{{p}^{3}}+{{q}^{3}}\]
D. \[{{p}^{3}}-{{q}^{3}}\]
Answer
380.7k+ views
Hint: We can solve the given set of equations just by simply substituting the values of $x,\text{ }y$and $z$in $xyz$. Since the solution of $xyz$ is independent of \[\omega \], thus we have to keep that point in mind to use the property of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
