
If \[x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}\] and $z=p{{\omega }^{2}}+q\omega $ where \[\omega \] is a complex cube root of unity, then $xyz$ =
A. ${{p}^{3}}+{{q}^{3}}$
B. \[{{p}^{2}}-pq+{{q}^{2}}\]
C. \[1+{{p}^{3}}+{{q}^{3}}\]
D. \[{{p}^{3}}-{{q}^{3}}\]
Answer
531.9k+ views
Hint: We can solve the given set of equations just by simply substituting the values of $x,\text{ }y$and $z$in $xyz$. Since the solution of $xyz$ is independent of \[\omega \], thus we have to keep that point in mind to use the property of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
