Answer
Verified
492.6k+ views
Hint: We can solve the given set of equations just by simply substituting the values of $x,\text{ }y$and $z$in $xyz$. Since the solution of $xyz$ is independent of \[\omega \], thus we have to keep that point in mind to use the property of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Complete step-by-step answer:
Here, we have $x=p+q,\text{ }y=p\omega +q{{\omega }^{2}}$ and $z=p{{\omega }^{2}}+q\omega $, where \[\omega \] is a complex cube root of unity.
And we have to find the value of $xyz$, thus by substituting the values of $x,\text{ }y$and $z$in it, we get
\[\begin{align}
& =xyz \\
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
\end{align}\]
Multiplying each value inside brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( p\omega +q{{\omega }^{2}} \right)\left( p{{\omega }^{2}}+q\omega \right) \\
& =\left( p+q \right)\left( p\omega \left( p{{\omega }^{2}}+q\omega \right)+q{{\omega }^{2}}\left( p{{\omega }^{2}}+q\omega \right) \right) \\
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Now, rearranging the similar terms together in the above equation, we get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}{{\omega }^{3}}+pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
\end{align}\]
Taking out the common terms from each of the brackets, we get
\[\begin{align}
& =\left( p+q \right)\left( pq{{\omega }^{2}}+qp{{\omega }^{4}}+{{p}^{2}}{{\omega }^{3}}+{{q}^{2}}{{\omega }^{3}} \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right)...\text{ }\left( 1 \right) \\
\end{align}\]
Now, we need to remove $\omega $ and for that, we have to use the properties of the complex cube root of unity, i.e.,
$1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$
Also, \[{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega \]
Thus, substituting these values in equation (1), we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+{{\omega }^{4}} \right)+{{\omega }^{3}}\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( pq\left( {{\omega }^{2}}+\omega \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
\end{align}\]
And,
$\begin{align}
& \Rightarrow 1+\omega +{{\omega }^{2}}=0 \\
& \Rightarrow \omega +{{\omega }^{2}}=-1 \\
\end{align}$
Thus, substituting this as well, we get
\[\begin{align}
& =\left( p+q \right)\left( pq\left( -1 \right)+\left( 1 \right)\left( {{p}^{2}}+{{q}^{2}} \right) \right) \\
& =\left( p+q \right)\left( -pq+{{p}^{2}}+{{q}^{2}} \right) \\
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
\end{align}\]
By multiplying these terms, we finally get
\[\begin{align}
& =\left( p+q \right)\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& =p\left( {{p}^{2}}+{{q}^{2}}-pq \right)+q\left( {{p}^{2}}+{{q}^{2}}-pq \right) \\
& ={{p}^{3}}+p{{q}^{2}}-{{p}^{2}}q+q{{p}^{2}}+{{q}^{3}}-p{{q}^{2}} \\
& ={{p}^{3}}+{{q}^{3}} \\
\end{align}\]
Hence, $xyz={{p}^{3}}+{{q}^{3}}$.
Note: One thing to avoid here is direct multiplication of all the terms together after substituting the values of $x,\text{ }y\text{ and }z$, as that might lead to an error. Because of complex multiplications, it is advised to first multiply the terms consisting of $\omega $ only to eliminate confusion, by using properties of the complex cube root of unity.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE