# If x=f (t) and y=f (t) are differentiable functions of t, then prove that y is a differentiable function of x and $\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dt}}}}}}{{\dfrac{{{\text{dx}}}}{{{\text{dt}}}}}},{\text{ where }}\dfrac{{{\text{dx}}}}{{{\text{dt}}}} \ne 0.$Hence find $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$if x = a${\text{co}}{{\text{s}}^2}{\text{t}}$ and y = a${\text{si}}{{\text{n}}^2}{\text{t}}$.

Answer

Verified

362.4k+ views

Hint – Using the given data in the question, i.e. the values of x and y, we differentiate them. Then on the output, we apply a basic sine function formula to determine the answer.

Complete step-by-step answer:

Given data,

x = a${\text{co}}{{\text{s}}^2}{\text{t}}$ and y = a${\text{si}}{{\text{n}}^2}{\text{t}}$.

Differentiating x and y with respect to t, we get

$

\dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ aco}}{{\text{s}}^2}{\text{t}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ asi}}{{\text{n}}^2}{\text{t}} \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ 2a cost }}\dfrac{{\text{d}}}{{{\text{dt}}}}{\text{cost}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ 2a sint }}\dfrac{{\text{d}}}{{{\text{dt}}}}{\text{sint}} \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ 2a}}\left( {{\text{cost}})\times ({\text{ - sint}}} \right),{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ a}}\left( {2{\text{sint}} \times {\text{cost}}} \right){\text{ }}\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{a}}{{\text{t}}^2}} \right) = {\text{2at}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{t}}} \right) \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ - 2a cost sint}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ 2a sint cost }}\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\sin \theta } \right) = \cos \theta {\text{ and }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cos}}\theta } \right){\text{ = - sin}}\theta {\text{ }}} \right) \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ - a sin2t}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ a sin2t }}\left( {\sin 2\theta = 2{\text{sin}}\theta {\text{cos}}\theta } \right) \\

$

Therefore,

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dt}}}}}}{{\dfrac{{{\text{dx}}}}{{{\text{dt}}}}}},{\text{ where }}\dfrac{{{\text{dx}}}}{{{\text{dt}}}} \ne 0.$

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$=$\dfrac{{{\text{asin2t}}}}{{{\text{ - asin2t}}}}$

$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = - 1$

Hence, the answer.

Note – In order to solve questions of this type the key is to differentiate the given terms precisely. General knowledge of differentials of basic trigonometric functions is required. Then the value obtained is converted into the desired form using formulae of trigonometric functions.

Complete step-by-step answer:

Given data,

x = a${\text{co}}{{\text{s}}^2}{\text{t}}$ and y = a${\text{si}}{{\text{n}}^2}{\text{t}}$.

Differentiating x and y with respect to t, we get

$

\dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ aco}}{{\text{s}}^2}{\text{t}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ asi}}{{\text{n}}^2}{\text{t}} \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ 2a cost }}\dfrac{{\text{d}}}{{{\text{dt}}}}{\text{cost}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ 2a sint }}\dfrac{{\text{d}}}{{{\text{dt}}}}{\text{sint}} \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ 2a}}\left( {{\text{cost}})\times ({\text{ - sint}}} \right),{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ a}}\left( {2{\text{sint}} \times {\text{cost}}} \right){\text{ }}\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{a}}{{\text{t}}^2}} \right) = {\text{2at}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{t}}} \right) \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ - 2a cost sint}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ 2a sint cost }}\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\sin \theta } \right) = \cos \theta {\text{ and }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{cos}}\theta } \right){\text{ = - sin}}\theta {\text{ }}} \right) \\

\Rightarrow \dfrac{{{\text{dx}}}}{{{\text{dt}}}} = {\text{ - a sin2t}},{\text{ }}\dfrac{{{\text{dy}}}}{{{\text{dt}}}} = {\text{ a sin2t }}\left( {\sin 2\theta = 2{\text{sin}}\theta {\text{cos}}\theta } \right) \\

$

Therefore,

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{\dfrac{{{\text{dy}}}}{{{\text{dt}}}}}}{{\dfrac{{{\text{dx}}}}{{{\text{dt}}}}}},{\text{ where }}\dfrac{{{\text{dx}}}}{{{\text{dt}}}} \ne 0.$

$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$=$\dfrac{{{\text{asin2t}}}}{{{\text{ - asin2t}}}}$

$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = - 1$

Hence, the answer.

Note – In order to solve questions of this type the key is to differentiate the given terms precisely. General knowledge of differentials of basic trigonometric functions is required. Then the value obtained is converted into the desired form using formulae of trigonometric functions.

Last updated date: 01st Oct 2023

•

Total views: 362.4k

•

Views today: 3.62k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE