If $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$, show that at $t=\dfrac{\pi }{4}$,
$\dfrac{dy}{dx}=\dfrac{b}{a}$.
Answer
Verified
506.1k+ views
Hint: Take $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$ and differentiate both of them w.r.t $t$ .After that, divide each other and substitute $t=\dfrac{\pi }{4}$. You will get the answer.
Complete step by step solution :
We are given $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$.
So now differentiating $x$ w.r.t $t$ and differentiating $y$ w.r.t $t$ we get,
For $x$,
\[\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin 2t(1+\cos 2t) \right) \\
& \dfrac{dx}{dt}=a\sin 2t\dfrac{d}{dt}(1+\cos 2t)+a(1+\cos 2t)\dfrac{d}{dt}\sin 2t \\
& \dfrac{dx}{dt}=a\sin 2t(-2\sin 2t)+2a(1+\cos 2t)(\cos 2t) \\
& \dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t) \\
\end{align}\]
\[\dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)\] …………… (1)
For $y$,
\[\begin{align}
& \dfrac{dy}{dt}=\dfrac{d}{dt}b\cos 2t(1-\cos 2t) \\
& \dfrac{dy}{dt}=b\cos 2t\dfrac{d}{dt}(1-\cos 2t)+b(1-\cos 2t)\dfrac{d}{dt}\cos 2t \\
& \dfrac{dy}{dt}=b\cos 2t(2\sin 2t)+b(1-\cos 2t)(-2\sin 2t) \\
& \dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t) \\
\end{align}\]
\[\dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)\]……………. (2)
Now dividing (2) by (1) we get,
\[\begin{align}
& \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin
}^{2}}2t+2a(1+\cos 2t)(\cos 2t)} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)}
\\
\end{align}\]
Now substituting $t=\dfrac{\pi }{4}$in (1) and (2), we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b\cos 2\left( \dfrac{\pi }{4} \right)\sin 2\left( \dfrac{\pi }{4} \right)-2b(1-\cos
2\left( \dfrac{\pi }{4} \right))(\sin 2\left( \dfrac{\pi }{4} \right))}{-2a{{\sin }^{2}}2\left( \dfrac{\pi }{4}
\right)+2a(1+\cos 2\left( \dfrac{\pi }{4} \right))(\cos 2\left( \dfrac{\pi }{4} \right))} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos \left( \dfrac{\pi }{2} \right)\sin \left( \dfrac{\pi }{2} \right)-2b(1-\cos
\left( \dfrac{\pi }{2} \right))(\sin \left( \dfrac{\pi }{2} \right))}{-2a{{\sin }^{2}}\left( \dfrac{\pi }{2}
\right)+2a(1+\cos \left( \dfrac{\pi }{2} \right))(\cos \left( \dfrac{\pi }{2} \right))} \\
\end{align}\]………….
Now taking $2a$and $2b$ common we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b}{2a}\left[ \dfrac{0-(1-0)(1)}{-1+0} \right] \\
& \dfrac{dy}{dx}=\dfrac{b}{a}\left[ \dfrac{-1}{-1} \right] \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{b}{a}\]
So we get, \[\dfrac{dy}{dx}=\dfrac{b}{a}\].
Hence proved.
Note: Read the question carefully. Don’t confuse yourself. Your concept regarding differentiation should be clear. Also, take care that while simplifying no terms are missed. Do not make any silly mistakes. While solving, take care that no signs are missed.
Complete step by step solution :
We are given $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$.
So now differentiating $x$ w.r.t $t$ and differentiating $y$ w.r.t $t$ we get,
For $x$,
\[\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin 2t(1+\cos 2t) \right) \\
& \dfrac{dx}{dt}=a\sin 2t\dfrac{d}{dt}(1+\cos 2t)+a(1+\cos 2t)\dfrac{d}{dt}\sin 2t \\
& \dfrac{dx}{dt}=a\sin 2t(-2\sin 2t)+2a(1+\cos 2t)(\cos 2t) \\
& \dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t) \\
\end{align}\]
\[\dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)\] …………… (1)
For $y$,
\[\begin{align}
& \dfrac{dy}{dt}=\dfrac{d}{dt}b\cos 2t(1-\cos 2t) \\
& \dfrac{dy}{dt}=b\cos 2t\dfrac{d}{dt}(1-\cos 2t)+b(1-\cos 2t)\dfrac{d}{dt}\cos 2t \\
& \dfrac{dy}{dt}=b\cos 2t(2\sin 2t)+b(1-\cos 2t)(-2\sin 2t) \\
& \dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t) \\
\end{align}\]
\[\dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)\]……………. (2)
Now dividing (2) by (1) we get,
\[\begin{align}
& \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin
}^{2}}2t+2a(1+\cos 2t)(\cos 2t)} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)}
\\
\end{align}\]
Now substituting $t=\dfrac{\pi }{4}$in (1) and (2), we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b\cos 2\left( \dfrac{\pi }{4} \right)\sin 2\left( \dfrac{\pi }{4} \right)-2b(1-\cos
2\left( \dfrac{\pi }{4} \right))(\sin 2\left( \dfrac{\pi }{4} \right))}{-2a{{\sin }^{2}}2\left( \dfrac{\pi }{4}
\right)+2a(1+\cos 2\left( \dfrac{\pi }{4} \right))(\cos 2\left( \dfrac{\pi }{4} \right))} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos \left( \dfrac{\pi }{2} \right)\sin \left( \dfrac{\pi }{2} \right)-2b(1-\cos
\left( \dfrac{\pi }{2} \right))(\sin \left( \dfrac{\pi }{2} \right))}{-2a{{\sin }^{2}}\left( \dfrac{\pi }{2}
\right)+2a(1+\cos \left( \dfrac{\pi }{2} \right))(\cos \left( \dfrac{\pi }{2} \right))} \\
\end{align}\]………….
Now taking $2a$and $2b$ common we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b}{2a}\left[ \dfrac{0-(1-0)(1)}{-1+0} \right] \\
& \dfrac{dy}{dx}=\dfrac{b}{a}\left[ \dfrac{-1}{-1} \right] \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{b}{a}\]
So we get, \[\dfrac{dy}{dx}=\dfrac{b}{a}\].
Hence proved.
Note: Read the question carefully. Don’t confuse yourself. Your concept regarding differentiation should be clear. Also, take care that while simplifying no terms are missed. Do not make any silly mistakes. While solving, take care that no signs are missed.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE