Answer

Verified

476.1k+ views

Hint: Take $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$ and differentiate both of them w.r.t $t$ .After that, divide each other and substitute $t=\dfrac{\pi }{4}$. You will get the answer.

Complete step by step solution :

We are given $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$.

So now differentiating $x$ w.r.t $t$ and differentiating $y$ w.r.t $t$ we get,

For $x$,

\[\begin{align}

& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin 2t(1+\cos 2t) \right) \\

& \dfrac{dx}{dt}=a\sin 2t\dfrac{d}{dt}(1+\cos 2t)+a(1+\cos 2t)\dfrac{d}{dt}\sin 2t \\

& \dfrac{dx}{dt}=a\sin 2t(-2\sin 2t)+2a(1+\cos 2t)(\cos 2t) \\

& \dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t) \\

\end{align}\]

\[\dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)\] …………… (1)

For $y$,

\[\begin{align}

& \dfrac{dy}{dt}=\dfrac{d}{dt}b\cos 2t(1-\cos 2t) \\

& \dfrac{dy}{dt}=b\cos 2t\dfrac{d}{dt}(1-\cos 2t)+b(1-\cos 2t)\dfrac{d}{dt}\cos 2t \\

& \dfrac{dy}{dt}=b\cos 2t(2\sin 2t)+b(1-\cos 2t)(-2\sin 2t) \\

& \dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t) \\

\end{align}\]

\[\dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)\]……………. (2)

Now dividing (2) by (1) we get,

\[\begin{align}

& \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin

}^{2}}2t+2a(1+\cos 2t)(\cos 2t)} \\

& \dfrac{dy}{dx}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)}

\\

\end{align}\]

Now substituting $t=\dfrac{\pi }{4}$in (1) and (2), we get,

\[\begin{align}

& \dfrac{dy}{dx}=\dfrac{2b\cos 2\left( \dfrac{\pi }{4} \right)\sin 2\left( \dfrac{\pi }{4} \right)-2b(1-\cos

2\left( \dfrac{\pi }{4} \right))(\sin 2\left( \dfrac{\pi }{4} \right))}{-2a{{\sin }^{2}}2\left( \dfrac{\pi }{4}

\right)+2a(1+\cos 2\left( \dfrac{\pi }{4} \right))(\cos 2\left( \dfrac{\pi }{4} \right))} \\

& \dfrac{dy}{dx}=\dfrac{2b\cos \left( \dfrac{\pi }{2} \right)\sin \left( \dfrac{\pi }{2} \right)-2b(1-\cos

\left( \dfrac{\pi }{2} \right))(\sin \left( \dfrac{\pi }{2} \right))}{-2a{{\sin }^{2}}\left( \dfrac{\pi }{2}

\right)+2a(1+\cos \left( \dfrac{\pi }{2} \right))(\cos \left( \dfrac{\pi }{2} \right))} \\

\end{align}\]………….

Now taking $2a$and $2b$ common we get,

\[\begin{align}

& \dfrac{dy}{dx}=\dfrac{2b}{2a}\left[ \dfrac{0-(1-0)(1)}{-1+0} \right] \\

& \dfrac{dy}{dx}=\dfrac{b}{a}\left[ \dfrac{-1}{-1} \right] \\

\end{align}\]

\[\dfrac{dy}{dx}=\dfrac{b}{a}\]

So we get, \[\dfrac{dy}{dx}=\dfrac{b}{a}\].

Hence proved.

Note: Read the question carefully. Don’t confuse yourself. Your concept regarding differentiation should be clear. Also, take care that while simplifying no terms are missed. Do not make any silly mistakes. While solving, take care that no signs are missed.

Complete step by step solution :

We are given $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$.

So now differentiating $x$ w.r.t $t$ and differentiating $y$ w.r.t $t$ we get,

For $x$,

\[\begin{align}

& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin 2t(1+\cos 2t) \right) \\

& \dfrac{dx}{dt}=a\sin 2t\dfrac{d}{dt}(1+\cos 2t)+a(1+\cos 2t)\dfrac{d}{dt}\sin 2t \\

& \dfrac{dx}{dt}=a\sin 2t(-2\sin 2t)+2a(1+\cos 2t)(\cos 2t) \\

& \dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t) \\

\end{align}\]

\[\dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)\] …………… (1)

For $y$,

\[\begin{align}

& \dfrac{dy}{dt}=\dfrac{d}{dt}b\cos 2t(1-\cos 2t) \\

& \dfrac{dy}{dt}=b\cos 2t\dfrac{d}{dt}(1-\cos 2t)+b(1-\cos 2t)\dfrac{d}{dt}\cos 2t \\

& \dfrac{dy}{dt}=b\cos 2t(2\sin 2t)+b(1-\cos 2t)(-2\sin 2t) \\

& \dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t) \\

\end{align}\]

\[\dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)\]……………. (2)

Now dividing (2) by (1) we get,

\[\begin{align}

& \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin

}^{2}}2t+2a(1+\cos 2t)(\cos 2t)} \\

& \dfrac{dy}{dx}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)}

\\

\end{align}\]

Now substituting $t=\dfrac{\pi }{4}$in (1) and (2), we get,

\[\begin{align}

& \dfrac{dy}{dx}=\dfrac{2b\cos 2\left( \dfrac{\pi }{4} \right)\sin 2\left( \dfrac{\pi }{4} \right)-2b(1-\cos

2\left( \dfrac{\pi }{4} \right))(\sin 2\left( \dfrac{\pi }{4} \right))}{-2a{{\sin }^{2}}2\left( \dfrac{\pi }{4}

\right)+2a(1+\cos 2\left( \dfrac{\pi }{4} \right))(\cos 2\left( \dfrac{\pi }{4} \right))} \\

& \dfrac{dy}{dx}=\dfrac{2b\cos \left( \dfrac{\pi }{2} \right)\sin \left( \dfrac{\pi }{2} \right)-2b(1-\cos

\left( \dfrac{\pi }{2} \right))(\sin \left( \dfrac{\pi }{2} \right))}{-2a{{\sin }^{2}}\left( \dfrac{\pi }{2}

\right)+2a(1+\cos \left( \dfrac{\pi }{2} \right))(\cos \left( \dfrac{\pi }{2} \right))} \\

\end{align}\]………….

Now taking $2a$and $2b$ common we get,

\[\begin{align}

& \dfrac{dy}{dx}=\dfrac{2b}{2a}\left[ \dfrac{0-(1-0)(1)}{-1+0} \right] \\

& \dfrac{dy}{dx}=\dfrac{b}{a}\left[ \dfrac{-1}{-1} \right] \\

\end{align}\]

\[\dfrac{dy}{dx}=\dfrac{b}{a}\]

So we get, \[\dfrac{dy}{dx}=\dfrac{b}{a}\].

Hence proved.

Note: Read the question carefully. Don’t confuse yourself. Your concept regarding differentiation should be clear. Also, take care that while simplifying no terms are missed. Do not make any silly mistakes. While solving, take care that no signs are missed.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths