Answer
Verified
476.1k+ views
Hint: Take $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$ and differentiate both of them w.r.t $t$ .After that, divide each other and substitute $t=\dfrac{\pi }{4}$. You will get the answer.
Complete step by step solution :
We are given $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$.
So now differentiating $x$ w.r.t $t$ and differentiating $y$ w.r.t $t$ we get,
For $x$,
\[\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin 2t(1+\cos 2t) \right) \\
& \dfrac{dx}{dt}=a\sin 2t\dfrac{d}{dt}(1+\cos 2t)+a(1+\cos 2t)\dfrac{d}{dt}\sin 2t \\
& \dfrac{dx}{dt}=a\sin 2t(-2\sin 2t)+2a(1+\cos 2t)(\cos 2t) \\
& \dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t) \\
\end{align}\]
\[\dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)\] …………… (1)
For $y$,
\[\begin{align}
& \dfrac{dy}{dt}=\dfrac{d}{dt}b\cos 2t(1-\cos 2t) \\
& \dfrac{dy}{dt}=b\cos 2t\dfrac{d}{dt}(1-\cos 2t)+b(1-\cos 2t)\dfrac{d}{dt}\cos 2t \\
& \dfrac{dy}{dt}=b\cos 2t(2\sin 2t)+b(1-\cos 2t)(-2\sin 2t) \\
& \dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t) \\
\end{align}\]
\[\dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)\]……………. (2)
Now dividing (2) by (1) we get,
\[\begin{align}
& \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin
}^{2}}2t+2a(1+\cos 2t)(\cos 2t)} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)}
\\
\end{align}\]
Now substituting $t=\dfrac{\pi }{4}$in (1) and (2), we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b\cos 2\left( \dfrac{\pi }{4} \right)\sin 2\left( \dfrac{\pi }{4} \right)-2b(1-\cos
2\left( \dfrac{\pi }{4} \right))(\sin 2\left( \dfrac{\pi }{4} \right))}{-2a{{\sin }^{2}}2\left( \dfrac{\pi }{4}
\right)+2a(1+\cos 2\left( \dfrac{\pi }{4} \right))(\cos 2\left( \dfrac{\pi }{4} \right))} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos \left( \dfrac{\pi }{2} \right)\sin \left( \dfrac{\pi }{2} \right)-2b(1-\cos
\left( \dfrac{\pi }{2} \right))(\sin \left( \dfrac{\pi }{2} \right))}{-2a{{\sin }^{2}}\left( \dfrac{\pi }{2}
\right)+2a(1+\cos \left( \dfrac{\pi }{2} \right))(\cos \left( \dfrac{\pi }{2} \right))} \\
\end{align}\]………….
Now taking $2a$and $2b$ common we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b}{2a}\left[ \dfrac{0-(1-0)(1)}{-1+0} \right] \\
& \dfrac{dy}{dx}=\dfrac{b}{a}\left[ \dfrac{-1}{-1} \right] \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{b}{a}\]
So we get, \[\dfrac{dy}{dx}=\dfrac{b}{a}\].
Hence proved.
Note: Read the question carefully. Don’t confuse yourself. Your concept regarding differentiation should be clear. Also, take care that while simplifying no terms are missed. Do not make any silly mistakes. While solving, take care that no signs are missed.
Complete step by step solution :
We are given $x=a\sin 2t(1+\cos 2t)$ and $y=b\cos 2t(1-\cos 2t)$.
So now differentiating $x$ w.r.t $t$ and differentiating $y$ w.r.t $t$ we get,
For $x$,
\[\begin{align}
& \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\sin 2t(1+\cos 2t) \right) \\
& \dfrac{dx}{dt}=a\sin 2t\dfrac{d}{dt}(1+\cos 2t)+a(1+\cos 2t)\dfrac{d}{dt}\sin 2t \\
& \dfrac{dx}{dt}=a\sin 2t(-2\sin 2t)+2a(1+\cos 2t)(\cos 2t) \\
& \dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t) \\
\end{align}\]
\[\dfrac{dx}{dt}=-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)\] …………… (1)
For $y$,
\[\begin{align}
& \dfrac{dy}{dt}=\dfrac{d}{dt}b\cos 2t(1-\cos 2t) \\
& \dfrac{dy}{dt}=b\cos 2t\dfrac{d}{dt}(1-\cos 2t)+b(1-\cos 2t)\dfrac{d}{dt}\cos 2t \\
& \dfrac{dy}{dt}=b\cos 2t(2\sin 2t)+b(1-\cos 2t)(-2\sin 2t) \\
& \dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t) \\
\end{align}\]
\[\dfrac{dy}{dt}=2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)\]……………. (2)
Now dividing (2) by (1) we get,
\[\begin{align}
& \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin
}^{2}}2t+2a(1+\cos 2t)(\cos 2t)} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos 2t\sin 2t-2b(1-\cos 2t)(\sin 2t)}{-2a{{\sin }^{2}}2t+2a(1+\cos 2t)(\cos 2t)}
\\
\end{align}\]
Now substituting $t=\dfrac{\pi }{4}$in (1) and (2), we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b\cos 2\left( \dfrac{\pi }{4} \right)\sin 2\left( \dfrac{\pi }{4} \right)-2b(1-\cos
2\left( \dfrac{\pi }{4} \right))(\sin 2\left( \dfrac{\pi }{4} \right))}{-2a{{\sin }^{2}}2\left( \dfrac{\pi }{4}
\right)+2a(1+\cos 2\left( \dfrac{\pi }{4} \right))(\cos 2\left( \dfrac{\pi }{4} \right))} \\
& \dfrac{dy}{dx}=\dfrac{2b\cos \left( \dfrac{\pi }{2} \right)\sin \left( \dfrac{\pi }{2} \right)-2b(1-\cos
\left( \dfrac{\pi }{2} \right))(\sin \left( \dfrac{\pi }{2} \right))}{-2a{{\sin }^{2}}\left( \dfrac{\pi }{2}
\right)+2a(1+\cos \left( \dfrac{\pi }{2} \right))(\cos \left( \dfrac{\pi }{2} \right))} \\
\end{align}\]………….
Now taking $2a$and $2b$ common we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{2b}{2a}\left[ \dfrac{0-(1-0)(1)}{-1+0} \right] \\
& \dfrac{dy}{dx}=\dfrac{b}{a}\left[ \dfrac{-1}{-1} \right] \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{b}{a}\]
So we get, \[\dfrac{dy}{dx}=\dfrac{b}{a}\].
Hence proved.
Note: Read the question carefully. Don’t confuse yourself. Your concept regarding differentiation should be clear. Also, take care that while simplifying no terms are missed. Do not make any silly mistakes. While solving, take care that no signs are missed.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths