
If ${\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right]$and${\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]$, find the value of X and Y.
Answer
608.7k+ views
Hint- Use matrix addition/subtraction and multiplication with scalar while simplifying RHS and perform elimination methods.
Two linear equations are given to us that is
\[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right]\]……………………………… (1)
\[{\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]……………………….. (2)
We will be simply using the elimination method to solve for the value of X and Y but in the right hand side we have been provided with a \[{\text{3}} \times {\text{3}}\]matrix, so in RHS we will be using matrix addition.
Matrix addition states that if we have two \[{\text{m}} \times {\text{n}}\]matrix like \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}
{{b_{11}}}&{{b_{12}}}&{{b_{13}}} \\
{{b_{21}}}&{{b_{22}}}&{{b_{23}}} \\
{{b_{31}}}&{{b_{32}}}&{{b_{33}}}
\end{array}} \right]\]then
The addition of these two matrix will be \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}} + {b_{11}}}&{{a_{12}} + {b_{12}}}&{{a_{13}} + {b_{13}}} \\
{{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}&{{a_{23}} + {b_{23}}} \\
{{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}}&{{a_{33}} + {b_{33}}}
\end{array}} \right]\]
Hence now let’s add equation 1 and equation 2 so we get
\[{\text{X - Y}} + {\text{X + Y}} = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
\[2X{\text{ = }}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]
Now \[{\text{X = }}\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]or \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
0&1&2 \\
6&4&0
\end{array}} \right]\]
Now let’s subtract equation (2) from equation (1)
\[{\text{X - Y - X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
Let’s simplify this further we get
\[ - 2Y = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]{\text{ or Y = }}\dfrac{{ - 1}}{2}\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]\]
Thus \[Y = \left[ {\begin{array}{*{20}{c}}
1&2&0 \\
{ - 1}&0&2 \\
5&4&0
\end{array}} \right]\]
Note-Such problems could be solved via the concept that we use while solving any two linear equations. We could have even used the method of substitution instead of elimination to solve this, the only thing which needs to be taken care of is matrix addition and subtraction is a bit different from simpler linear addition and subtraction.
Two linear equations are given to us that is
\[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right]\]……………………………… (1)
\[{\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]……………………….. (2)
We will be simply using the elimination method to solve for the value of X and Y but in the right hand side we have been provided with a \[{\text{3}} \times {\text{3}}\]matrix, so in RHS we will be using matrix addition.
Matrix addition states that if we have two \[{\text{m}} \times {\text{n}}\]matrix like \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}
{{b_{11}}}&{{b_{12}}}&{{b_{13}}} \\
{{b_{21}}}&{{b_{22}}}&{{b_{23}}} \\
{{b_{31}}}&{{b_{32}}}&{{b_{33}}}
\end{array}} \right]\]then
The addition of these two matrix will be \[\left[ {\begin{array}{*{20}{c}}
{{a_{11}} + {b_{11}}}&{{a_{12}} + {b_{12}}}&{{a_{13}} + {b_{13}}} \\
{{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}&{{a_{23}} + {b_{23}}} \\
{{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}}&{{a_{33}} + {b_{33}}}
\end{array}} \right]\]
Hence now let’s add equation 1 and equation 2 so we get
\[{\text{X - Y}} + {\text{X + Y}} = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
\[2X{\text{ = }}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]
Now \[{\text{X = }}\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
4&6&2 \\
0&2&4 \\
{12}&8&0
\end{array}} \right]\]or \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
0&1&2 \\
6&4&0
\end{array}} \right]\]
Now let’s subtract equation (2) from equation (1)
\[{\text{X - Y - X - Y = }}\left[ {\begin{array}{*{20}{c}}
1&1&1 \\
1&1&0 \\
1&0&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
3&5&1 \\
{ - 1}&1&4 \\
{11}&8&0
\end{array}} \right]\]
Let’s simplify this further we get
\[ - 2Y = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]{\text{ or Y = }}\dfrac{{ - 1}}{2}\left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 4}&0 \\
2&0&{ - 4} \\
{ - 10}&{ - 8}&0
\end{array}} \right]\]
Thus \[Y = \left[ {\begin{array}{*{20}{c}}
1&2&0 \\
{ - 1}&0&2 \\
5&4&0
\end{array}} \right]\]
Note-Such problems could be solved via the concept that we use while solving any two linear equations. We could have even used the method of substitution instead of elimination to solve this, the only thing which needs to be taken care of is matrix addition and subtraction is a bit different from simpler linear addition and subtraction.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

