# If ${\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right]$and${\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]$, find the value of X and Y.

Last updated date: 21st Mar 2023

•

Total views: 308.1k

•

Views today: 4.86k

Answer

Verified

308.1k+ views

Hint- Use matrix addition/subtraction and multiplication with scalar while simplifying RHS and perform elimination methods.

Two linear equations are given to us that is

\[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right]\]……………………………… (1)

\[{\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]\]……………………….. (2)

We will be simply using the elimination method to solve for the value of X and Y but in the right hand side we have been provided with a \[{\text{3}} \times {\text{3}}\]matrix, so in RHS we will be using matrix addition.

Matrix addition states that if we have two \[{\text{m}} \times {\text{n}}\]matrix like \[\left[ {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}

{{b_{11}}}&{{b_{12}}}&{{b_{13}}} \\

{{b_{21}}}&{{b_{22}}}&{{b_{23}}} \\

{{b_{31}}}&{{b_{32}}}&{{b_{33}}}

\end{array}} \right]\]then

The addition of these two matrix will be \[\left[ {\begin{array}{*{20}{c}}

{{a_{11}} + {b_{11}}}&{{a_{12}} + {b_{12}}}&{{a_{13}} + {b_{13}}} \\

{{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}&{{a_{23}} + {b_{23}}} \\

{{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}}&{{a_{33}} + {b_{33}}}

\end{array}} \right]\]

Hence now let’s add equation 1 and equation 2 so we get

\[{\text{X - Y}} + {\text{X + Y}} = \left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]\]

\[2X{\text{ = }}\left[ {\begin{array}{*{20}{c}}

4&6&2 \\

0&2&4 \\

{12}&8&0

\end{array}} \right]\]

Now \[{\text{X = }}\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}

4&6&2 \\

0&2&4 \\

{12}&8&0

\end{array}} \right]\]or \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}

2&3&1 \\

0&1&2 \\

6&4&0

\end{array}} \right]\]

Now let’s subtract equation (2) from equation (1)

\[{\text{X - Y - X - Y = }}\left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]\]

Let’s simplify this further we get

\[ - 2Y = \left[ {\begin{array}{*{20}{c}}

{ - 2}&{ - 4}&0 \\

2&0&{ - 4} \\

{ - 10}&{ - 8}&0

\end{array}} \right]{\text{ or Y = }}\dfrac{{ - 1}}{2}\left[ {\begin{array}{*{20}{c}}

{ - 2}&{ - 4}&0 \\

2&0&{ - 4} \\

{ - 10}&{ - 8}&0

\end{array}} \right]\]

Thus \[Y = \left[ {\begin{array}{*{20}{c}}

1&2&0 \\

{ - 1}&0&2 \\

5&4&0

\end{array}} \right]\]

Note-Such problems could be solved via the concept that we use while solving any two linear equations. We could have even used the method of substitution instead of elimination to solve this, the only thing which needs to be taken care of is matrix addition and subtraction is a bit different from simpler linear addition and subtraction.

Two linear equations are given to us that is

\[{\text{X - Y = }}\left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right]\]……………………………… (1)

\[{\text{X + Y = }}\left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]\]……………………….. (2)

We will be simply using the elimination method to solve for the value of X and Y but in the right hand side we have been provided with a \[{\text{3}} \times {\text{3}}\]matrix, so in RHS we will be using matrix addition.

Matrix addition states that if we have two \[{\text{m}} \times {\text{n}}\]matrix like \[\left[ {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}

{{b_{11}}}&{{b_{12}}}&{{b_{13}}} \\

{{b_{21}}}&{{b_{22}}}&{{b_{23}}} \\

{{b_{31}}}&{{b_{32}}}&{{b_{33}}}

\end{array}} \right]\]then

The addition of these two matrix will be \[\left[ {\begin{array}{*{20}{c}}

{{a_{11}} + {b_{11}}}&{{a_{12}} + {b_{12}}}&{{a_{13}} + {b_{13}}} \\

{{a_{21}} + {b_{21}}}&{{a_{22}} + {b_{22}}}&{{a_{23}} + {b_{23}}} \\

{{a_{31}} + {b_{31}}}&{{a_{32}} + {b_{32}}}&{{a_{33}} + {b_{33}}}

\end{array}} \right]\]

Hence now let’s add equation 1 and equation 2 so we get

\[{\text{X - Y}} + {\text{X + Y}} = \left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]\]

\[2X{\text{ = }}\left[ {\begin{array}{*{20}{c}}

4&6&2 \\

0&2&4 \\

{12}&8&0

\end{array}} \right]\]

Now \[{\text{X = }}\dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}

4&6&2 \\

0&2&4 \\

{12}&8&0

\end{array}} \right]\]or \[{\text{X = }}\left[ {\begin{array}{*{20}{c}}

2&3&1 \\

0&1&2 \\

6&4&0

\end{array}} \right]\]

Now let’s subtract equation (2) from equation (1)

\[{\text{X - Y - X - Y = }}\left[ {\begin{array}{*{20}{c}}

1&1&1 \\

1&1&0 \\

1&0&0

\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}

3&5&1 \\

{ - 1}&1&4 \\

{11}&8&0

\end{array}} \right]\]

Let’s simplify this further we get

\[ - 2Y = \left[ {\begin{array}{*{20}{c}}

{ - 2}&{ - 4}&0 \\

2&0&{ - 4} \\

{ - 10}&{ - 8}&0

\end{array}} \right]{\text{ or Y = }}\dfrac{{ - 1}}{2}\left[ {\begin{array}{*{20}{c}}

{ - 2}&{ - 4}&0 \\

2&0&{ - 4} \\

{ - 10}&{ - 8}&0

\end{array}} \right]\]

Thus \[Y = \left[ {\begin{array}{*{20}{c}}

1&2&0 \\

{ - 1}&0&2 \\

5&4&0

\end{array}} \right]\]

Note-Such problems could be solved via the concept that we use while solving any two linear equations. We could have even used the method of substitution instead of elimination to solve this, the only thing which needs to be taken care of is matrix addition and subtraction is a bit different from simpler linear addition and subtraction.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?