
If x, y and z are non-zero real numbers, then the inverse of the matrix $A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$ is
A. $\left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)$
B. $xyz\left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)$
C. $\dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$
D. $\dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Answer
569.4k+ views
Hint: To solve this question, we have to remember that the inverse of matrix A is given by, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj.A$, where adj. A denotes the adjoint of matrix A and $\left| A \right|$ is the determinant of A.
Complete step-by-step answer:
We have,
$ \Rightarrow A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$
We know that, for A to be invertible, $\left| A \right| \ne 0$
So, first we will find $\left| A \right|$
$ \Rightarrow x\left( {yz - 0} \right) - 0 - 0$
$ \Rightarrow \left| A \right| = xyz$
We can see that $\left| A \right| \ne 0$, hence, A is invertible.
Now, we will find the adj. A.
In order to find the adj. A, we have to find the cofactor matrix of A.
We know that,
Cofactor, \[{C_{ij}}\]of \[{a_{ij}}\] in A = \[{\left[ {{a_{ij}}} \right]_{n \times n}}\] is equal to ${\left( { - 1} \right)^{i + j}}{M_{ij}}$
Where ${M_{ij}}$ is the minor.
So,
Cofactor of \[{a_{11}}\] = $\left| {\begin{array}{*{20}{c}}
y&0 \\
0&z
\end{array}} \right| = yz$
Cofactor of \[{a_{12}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{13}}\] = $\left| {\begin{array}{*{20}{c}}
0&y \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{21}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{22}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&z
\end{array}} \right| = xz$
Cofactor of \[{a_{23}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{31}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
y&0
\end{array}} \right| = 0$
Cofactor of \[{a_{32}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{33}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&y
\end{array}} \right| = xy$
Therefore, the cofactor matrix of A is $\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Now, the adj. A is the transpose of the cofactor matrix of A.
Therefore,
\[adj.A = \left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)\]
We know that,
Inverse of A is given by, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj.A$
So,
$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Taking $\dfrac{1}{{xyz}}$ inside the matrix, we will get
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{yz}}{{xyz}}}&0&0 \\
0&{\dfrac{{xz}}{{xyz}}}&0 \\
0&0&{\dfrac{{xy}}{{xyz}}}
\end{array}} \right)\]
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
We can write this as:
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)\]
So, the correct answer is “Option A”.
Note: Whenever we asked such type of questions, we have to remember that a square matrix of order n is invertible if there exists a square matrix B of the same order such that $AB = {I_n} = BA$, in such a way, we can write ${A^{ - 1}} = B$ A square matrix is invertible if and only if it is non-singular. Through these things, we can easily solve the questions.
Complete step-by-step answer:
We have,
$ \Rightarrow A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$
We know that, for A to be invertible, $\left| A \right| \ne 0$
So, first we will find $\left| A \right|$
$ \Rightarrow x\left( {yz - 0} \right) - 0 - 0$
$ \Rightarrow \left| A \right| = xyz$
We can see that $\left| A \right| \ne 0$, hence, A is invertible.
Now, we will find the adj. A.
In order to find the adj. A, we have to find the cofactor matrix of A.
We know that,
Cofactor, \[{C_{ij}}\]of \[{a_{ij}}\] in A = \[{\left[ {{a_{ij}}} \right]_{n \times n}}\] is equal to ${\left( { - 1} \right)^{i + j}}{M_{ij}}$
Where ${M_{ij}}$ is the minor.
So,
Cofactor of \[{a_{11}}\] = $\left| {\begin{array}{*{20}{c}}
y&0 \\
0&z
\end{array}} \right| = yz$
Cofactor of \[{a_{12}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{13}}\] = $\left| {\begin{array}{*{20}{c}}
0&y \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{21}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{22}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&z
\end{array}} \right| = xz$
Cofactor of \[{a_{23}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{31}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
y&0
\end{array}} \right| = 0$
Cofactor of \[{a_{32}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{33}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&y
\end{array}} \right| = xy$
Therefore, the cofactor matrix of A is $\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Now, the adj. A is the transpose of the cofactor matrix of A.
Therefore,
\[adj.A = \left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)\]
We know that,
Inverse of A is given by, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj.A$
So,
$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Taking $\dfrac{1}{{xyz}}$ inside the matrix, we will get
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{yz}}{{xyz}}}&0&0 \\
0&{\dfrac{{xz}}{{xyz}}}&0 \\
0&0&{\dfrac{{xy}}{{xyz}}}
\end{array}} \right)\]
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
We can write this as:
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)\]
So, the correct answer is “Option A”.
Note: Whenever we asked such type of questions, we have to remember that a square matrix of order n is invertible if there exists a square matrix B of the same order such that $AB = {I_n} = BA$, in such a way, we can write ${A^{ - 1}} = B$ A square matrix is invertible if and only if it is non-singular. Through these things, we can easily solve the questions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

