
If x, y and z are non-zero real numbers, then the inverse of the matrix $A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$ is
A. $\left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)$
B. $xyz\left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)$
C. $\dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$
D. $\dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Answer
583.5k+ views
Hint: To solve this question, we have to remember that the inverse of matrix A is given by, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj.A$, where adj. A denotes the adjoint of matrix A and $\left| A \right|$ is the determinant of A.
Complete step-by-step answer:
We have,
$ \Rightarrow A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$
We know that, for A to be invertible, $\left| A \right| \ne 0$
So, first we will find $\left| A \right|$
$ \Rightarrow x\left( {yz - 0} \right) - 0 - 0$
$ \Rightarrow \left| A \right| = xyz$
We can see that $\left| A \right| \ne 0$, hence, A is invertible.
Now, we will find the adj. A.
In order to find the adj. A, we have to find the cofactor matrix of A.
We know that,
Cofactor, \[{C_{ij}}\]of \[{a_{ij}}\] in A = \[{\left[ {{a_{ij}}} \right]_{n \times n}}\] is equal to ${\left( { - 1} \right)^{i + j}}{M_{ij}}$
Where ${M_{ij}}$ is the minor.
So,
Cofactor of \[{a_{11}}\] = $\left| {\begin{array}{*{20}{c}}
y&0 \\
0&z
\end{array}} \right| = yz$
Cofactor of \[{a_{12}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{13}}\] = $\left| {\begin{array}{*{20}{c}}
0&y \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{21}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{22}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&z
\end{array}} \right| = xz$
Cofactor of \[{a_{23}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{31}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
y&0
\end{array}} \right| = 0$
Cofactor of \[{a_{32}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{33}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&y
\end{array}} \right| = xy$
Therefore, the cofactor matrix of A is $\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Now, the adj. A is the transpose of the cofactor matrix of A.
Therefore,
\[adj.A = \left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)\]
We know that,
Inverse of A is given by, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj.A$
So,
$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Taking $\dfrac{1}{{xyz}}$ inside the matrix, we will get
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{yz}}{{xyz}}}&0&0 \\
0&{\dfrac{{xz}}{{xyz}}}&0 \\
0&0&{\dfrac{{xy}}{{xyz}}}
\end{array}} \right)\]
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
We can write this as:
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)\]
So, the correct answer is “Option A”.
Note: Whenever we asked such type of questions, we have to remember that a square matrix of order n is invertible if there exists a square matrix B of the same order such that $AB = {I_n} = BA$, in such a way, we can write ${A^{ - 1}} = B$ A square matrix is invertible if and only if it is non-singular. Through these things, we can easily solve the questions.
Complete step-by-step answer:
We have,
$ \Rightarrow A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\
0&y&0 \\
0&0&z
\end{array}} \right)$
We know that, for A to be invertible, $\left| A \right| \ne 0$
So, first we will find $\left| A \right|$
$ \Rightarrow x\left( {yz - 0} \right) - 0 - 0$
$ \Rightarrow \left| A \right| = xyz$
We can see that $\left| A \right| \ne 0$, hence, A is invertible.
Now, we will find the adj. A.
In order to find the adj. A, we have to find the cofactor matrix of A.
We know that,
Cofactor, \[{C_{ij}}\]of \[{a_{ij}}\] in A = \[{\left[ {{a_{ij}}} \right]_{n \times n}}\] is equal to ${\left( { - 1} \right)^{i + j}}{M_{ij}}$
Where ${M_{ij}}$ is the minor.
So,
Cofactor of \[{a_{11}}\] = $\left| {\begin{array}{*{20}{c}}
y&0 \\
0&z
\end{array}} \right| = yz$
Cofactor of \[{a_{12}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{13}}\] = $\left| {\begin{array}{*{20}{c}}
0&y \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{21}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
0&z
\end{array}} \right| = 0$
Cofactor of \[{a_{22}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&z
\end{array}} \right| = xz$
Cofactor of \[{a_{23}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{31}}\] = $\left| {\begin{array}{*{20}{c}}
0&0 \\
y&0
\end{array}} \right| = 0$
Cofactor of \[{a_{32}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&0
\end{array}} \right| = 0$
Cofactor of \[{a_{33}}\] = $\left| {\begin{array}{*{20}{c}}
x&0 \\
0&y
\end{array}} \right| = xy$
Therefore, the cofactor matrix of A is $\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Now, the adj. A is the transpose of the cofactor matrix of A.
Therefore,
\[adj.A = \left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)\]
We know that,
Inverse of A is given by, ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj.A$
So,
$ \Rightarrow {A^{ - 1}} = \dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\
0&{xz}&0 \\
0&0&{xy}
\end{array}} \right)$
Taking $\dfrac{1}{{xyz}}$ inside the matrix, we will get
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{yz}}{{xyz}}}&0&0 \\
0&{\dfrac{{xz}}{{xyz}}}&0 \\
0&0&{\dfrac{{xy}}{{xyz}}}
\end{array}} \right)\]
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{x}}&0&0 \\
0&{\dfrac{1}{y}}&0 \\
0&0&{\dfrac{1}{z}}
\end{array}} \right)\]
We can write this as:
\[ \Rightarrow {A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\
0&{{y^{ - 1}}}&0 \\
0&0&{{z^{ - 1}}}
\end{array}} \right)\]
So, the correct answer is “Option A”.
Note: Whenever we asked such type of questions, we have to remember that a square matrix of order n is invertible if there exists a square matrix B of the same order such that $AB = {I_n} = BA$, in such a way, we can write ${A^{ - 1}} = B$ A square matrix is invertible if and only if it is non-singular. Through these things, we can easily solve the questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

