Answer
Verified
390k+ views
Hint: Here in this question, we have to find the equation of the normal at the given point \[t = 1\]. Find the equation by using the Point-Slope formula \[y - {y_1} = m\left( {x - {x_1}} \right)\] before finding the equation first we have to find the slope using the formula \[m = - \dfrac{{dx}}{{dy}}\]. On simplification to the point-slope formula we get the required solution.
Complete step by step solution:
Normal form of a straight line, a normal to a line is considered as a line segment drawn from a point that is perpendicular to the given line.
Consider a given two equations:
\[x = {t^2}\]-------(1)
\[y = 2t\]------(2)
Squaring both side in equation (2), we have
\[ \Rightarrow {y^2} = {\left( {2t} \right)^2}\]
\[ \Rightarrow {y^2} = 4{t^2}\]
From equation (1)
\[ \Rightarrow {y^2} = 4x\]------(3)
Now find the point of normal line at \[t = 1\].
Consider equation (1) at \[t = 1\]
\[ \Rightarrow x = {\left( 1 \right)^2}\]
\[\therefore x = 1\]
Substitute x value in equation (3), we have
\[ \Rightarrow {y^2} = 4\left( 1 \right)\]
By taking a square root on both side, we get
\[ \Rightarrow y = \sqrt 4 \]
\[ \Rightarrow y = 2\]
Therefore, the point \[\left( {{x_1},{y_1}} \right) = \left( {1,2} \right)\]
Now, we have to find the equation of the normal to line at the point \[\left( {1,2} \right)\] by using the slope-point formula \[y - {y_1} = m\left( {x - {x_1}} \right)\]-------(4)
Before this, find the slope \[m\]in point-slope formula by using the formula \[m = - \dfrac{{dx}}{{dy}}\] at point \[\left( {1,2} \right)\]
Differentiate equation (3) with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {4x} \right)\]
\[ \Rightarrow 2y\dfrac{{dy}}{{dx}} = 4\]
Divide both side by 2y, then
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{2y}}\]
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,2} \right)}} = \dfrac{4}{{2\left( 2 \right)}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{4}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 1\]
Taking a reciprocal, then
\[ \Rightarrow \dfrac{{dx}}{{dy}} = 1\]
Add – sign on both side, then
\[ \Rightarrow m = - \dfrac{{dx}}{{dy}} = - 1\]
Now we get the gradient or slope of the line which passes through the points \[\left( {1,2} \right)\].
Substitute the slope m and the point \[\left( {{x_1},{y_1}} \right) = \left( {1,2} \right)\] in the point slope formula.
Consider the equation (4)
\[y - {y_1} = m\left( {x - {x_1}} \right)\]
Where \[m = - 1\], \[{x_1} = 1\] and \[{y_1} = 2\] on substitution, we get
\[ \Rightarrow y - 2 = - 1\left( {x - 1} \right)\]
\[ \Rightarrow y - 2 = - x + 1\]
Add x on both side, then
\[ \Rightarrow x + y - 2 = 1\]
Subtract 1 on both side, then
\[ \Rightarrow x + y - 2 - 1 = 0\]
On simplification, we get
\[ \Rightarrow x + y - 3 = 0\]
Hence, the equation of the normal of the line is \[x + y - 3 = 0\]. So, the correct answer is “Option A”.
Note: The concept of the equation of normal comes under the concept of application of derivatives. Here the differentiation is applied to the equation of line or curve and then substitute the value of x. We should know about the general equation of a line. Hence these types of problems are solved by the above procedure.
Complete step by step solution:
Normal form of a straight line, a normal to a line is considered as a line segment drawn from a point that is perpendicular to the given line.
Consider a given two equations:
\[x = {t^2}\]-------(1)
\[y = 2t\]------(2)
Squaring both side in equation (2), we have
\[ \Rightarrow {y^2} = {\left( {2t} \right)^2}\]
\[ \Rightarrow {y^2} = 4{t^2}\]
From equation (1)
\[ \Rightarrow {y^2} = 4x\]------(3)
Now find the point of normal line at \[t = 1\].
Consider equation (1) at \[t = 1\]
\[ \Rightarrow x = {\left( 1 \right)^2}\]
\[\therefore x = 1\]
Substitute x value in equation (3), we have
\[ \Rightarrow {y^2} = 4\left( 1 \right)\]
By taking a square root on both side, we get
\[ \Rightarrow y = \sqrt 4 \]
\[ \Rightarrow y = 2\]
Therefore, the point \[\left( {{x_1},{y_1}} \right) = \left( {1,2} \right)\]
Now, we have to find the equation of the normal to line at the point \[\left( {1,2} \right)\] by using the slope-point formula \[y - {y_1} = m\left( {x - {x_1}} \right)\]-------(4)
Before this, find the slope \[m\]in point-slope formula by using the formula \[m = - \dfrac{{dx}}{{dy}}\] at point \[\left( {1,2} \right)\]
Differentiate equation (3) with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {4x} \right)\]
\[ \Rightarrow 2y\dfrac{{dy}}{{dx}} = 4\]
Divide both side by 2y, then
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{2y}}\]
\[ \Rightarrow {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,2} \right)}} = \dfrac{4}{{2\left( 2 \right)}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{4}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 1\]
Taking a reciprocal, then
\[ \Rightarrow \dfrac{{dx}}{{dy}} = 1\]
Add – sign on both side, then
\[ \Rightarrow m = - \dfrac{{dx}}{{dy}} = - 1\]
Now we get the gradient or slope of the line which passes through the points \[\left( {1,2} \right)\].
Substitute the slope m and the point \[\left( {{x_1},{y_1}} \right) = \left( {1,2} \right)\] in the point slope formula.
Consider the equation (4)
\[y - {y_1} = m\left( {x - {x_1}} \right)\]
Where \[m = - 1\], \[{x_1} = 1\] and \[{y_1} = 2\] on substitution, we get
\[ \Rightarrow y - 2 = - 1\left( {x - 1} \right)\]
\[ \Rightarrow y - 2 = - x + 1\]
Add x on both side, then
\[ \Rightarrow x + y - 2 = 1\]
Subtract 1 on both side, then
\[ \Rightarrow x + y - 2 - 1 = 0\]
On simplification, we get
\[ \Rightarrow x + y - 3 = 0\]
Hence, the equation of the normal of the line is \[x + y - 3 = 0\]. So, the correct answer is “Option A”.
Note: The concept of the equation of normal comes under the concept of application of derivatives. Here the differentiation is applied to the equation of line or curve and then substitute the value of x. We should know about the general equation of a line. Hence these types of problems are solved by the above procedure.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE