
If x = r sinA cosC, y= r sinA sinC and z = r cosA , then prove that ${{r}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}$.
Answer
600.9k+ views
Hint: Evaluate the sum ${{x}^{2}}+{{y}^{2}}$ first. Then add it to ${{z}^{2}}$ to get the result. Use the trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Complete step-by-step answer:
Complete step-by-step answer:
We have x = r sinA cosC
Squaring both sides, we get
${{x}^{2}}={{(r\sin A\cos C)}^{2}}$
We know that ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$
Using the above formula, we get
\[{{x}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\cos }^{2}}C\text{ (i)}\]
y= r sinA sinC
Squaring both sides, we get
${{y}^{2}}={{\left( r\sin A\sin C \right)}^{2}}$
We know that ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$
Using the above formula, we get
\[{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\sin }^{2}}C\text{ (ii)}\]
Adding equation (i) and equation (ii), we get
${{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A{{\cos }^{2}}C+{{r}^{2}}{{\sin }^{2}}A{{\sin }^{2}}C$
Taking \[{{r}^{2}}{{\sin }^{2}}A\] common, we get
${{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\left( {{\cos }^{2}}C+{{\sin }^{2}}C \right)$
We know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Using the above formula, we get
$ {{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\left( 1 \right) $
$\Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}}{{\sin }^{2}}A\text{ (iii)} \\ $
Also, we know have z = r cosA
Squaring both sides, we get
${{z}^{2}}={{\left( r\cos A \right)}^{2}}$
We know that ${{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}$
Using the above formula, we get
${{z}^{2}}={{r}^{2}}{{\cos }^{2}}A\text{ (iv)}$
Adding equation (iii) and equation (iv), we get
${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}{{\sin }^{2}}A+{{r}^{2}}{{\cos }^{2}}A$
Taking ${{r}^{2}}$ common in RHS, we get
${{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)$
We know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Using the above formula, we get
$ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}}\left( 1 \right) $
$ \Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}} $
Hence proved.
Taking modulus on both sides we get
\[\left| \overrightarrow{v} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}\]
But magnitude of |v| = r.
Substituting the value of |v| we get
$r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Squaring both sides, we get
$ {{r}^{2}}={{\left( \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}} \right)}^{2}} $
$ \Rightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{r}^{2}} $
Hence proved.
[2] Here x, y and z can be considered as the x-coordinate, y-coordinate and the z-coordinate of a point P and r as the distance of P from origin in 3-D plane.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

