
If \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\]. Then show that \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Answer
233.1k+ views
Hint: First, convert the given complex numbers \[x = 1 + i\sqrt 3 \], and \[y = 1 - i\sqrt 3 \] into the polar form of complex number. Then apply the De Moivre’s theorem to calculate the values of \[{x^P}\], and \[{y^P}\]. In the end, substitute the values in the given equation to get the required answer.
Formula used:
The polar form of a complex number \[z = a + ib\] is: \[z = r\left( {\cos\theta + i\sin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Complete step by step solution:
The given complex numbers are \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\].
To Prove: \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Let’s convert the above complex numbers into polar form.
Multiply and divide \[x = 1 + i\sqrt 3 \] by 2.
We get,
\[x = 2\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\dfrac{\pi }{3} = \dfrac{1}{2}\] and \[\sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\].
\[x = 2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 1 \right)\]
Multiply and divide \[y = 1 - i\sqrt 3 \] by 2.
We get,
\[y = 2\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\] and \[\sin\left( { - \dfrac{\pi }{3}} \right) = \dfrac{{ - \sqrt 3 }}{2}\].
\[y = 2\left( {\cos\left( { - \dfrac{\pi }{3}} \right) + i\sin\left( { - \dfrac{\pi }{3}} \right)} \right)\]
Apply the trigonometric properties of angles \[\cos\left( { - \theta } \right) = \cos\theta \] and \[\sin\left( { - \theta } \right) = - \sin\theta \]
\[y = 2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 2 \right)\]
Let’s apply the De Moivre’s theorem on the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[{x^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {x^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 3 \right)\]
Also,
\[{y^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 4 \right)\]
Add the equations \[\left( 3 \right)\] and \[\left( 4 \right)\]. We get,
\[{x^P} + {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right] + \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\]
Simplify the above equation.
\[{x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}i\sin\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3} - {2^P}i\sin\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\left( {2\cos\dfrac{{P\pi }}{3}} \right)\]
We know that \[\cos\left( {\dfrac{{n\pi }}{3}} \right) = \dfrac{1}{2}\].
Then,
\[{x^P} + {y^P} = {2^P}\left( {2 \times \dfrac{1}{2}} \right)\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\]
Now substitute \[z = 2\] in the above equation.
\[{x^P} + {y^P} = {z^P}\]
Hence, proved.
Note: Students often get confused about the De Moivre’s theorem.
De Moivre’s Theorem: The power of a complex number in polar form is equal to raising the modulus to the same power and multiplying the argument by the same power.
Formula used:
The polar form of a complex number \[z = a + ib\] is: \[z = r\left( {\cos\theta + i\sin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Complete step by step solution:
The given complex numbers are \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\].
To Prove: \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Let’s convert the above complex numbers into polar form.
Multiply and divide \[x = 1 + i\sqrt 3 \] by 2.
We get,
\[x = 2\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\dfrac{\pi }{3} = \dfrac{1}{2}\] and \[\sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\].
\[x = 2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 1 \right)\]
Multiply and divide \[y = 1 - i\sqrt 3 \] by 2.
We get,
\[y = 2\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\] and \[\sin\left( { - \dfrac{\pi }{3}} \right) = \dfrac{{ - \sqrt 3 }}{2}\].
\[y = 2\left( {\cos\left( { - \dfrac{\pi }{3}} \right) + i\sin\left( { - \dfrac{\pi }{3}} \right)} \right)\]
Apply the trigonometric properties of angles \[\cos\left( { - \theta } \right) = \cos\theta \] and \[\sin\left( { - \theta } \right) = - \sin\theta \]
\[y = 2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 2 \right)\]
Let’s apply the De Moivre’s theorem on the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[{x^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {x^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 3 \right)\]
Also,
\[{y^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 4 \right)\]
Add the equations \[\left( 3 \right)\] and \[\left( 4 \right)\]. We get,
\[{x^P} + {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right] + \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\]
Simplify the above equation.
\[{x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}i\sin\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3} - {2^P}i\sin\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\left( {2\cos\dfrac{{P\pi }}{3}} \right)\]
We know that \[\cos\left( {\dfrac{{n\pi }}{3}} \right) = \dfrac{1}{2}\].
Then,
\[{x^P} + {y^P} = {2^P}\left( {2 \times \dfrac{1}{2}} \right)\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\]
Now substitute \[z = 2\] in the above equation.
\[{x^P} + {y^P} = {z^P}\]
Hence, proved.
Note: Students often get confused about the De Moivre’s theorem.
De Moivre’s Theorem: The power of a complex number in polar form is equal to raising the modulus to the same power and multiplying the argument by the same power.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

