
If we have a function as \[f(x)=\sin (\log x)\] and \[y=f\left( \dfrac{2x+3}{3-2x} \right)\], then \[\dfrac{dy}{dx}\] is
\[\begin{align}
& (A)\sin \left( \log x \right).\dfrac{1}{x\log x} \\
& \left( B \right)\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}} \\
& \left( C \right)\sin \left[ \log \left( \dfrac{2x+3}{3-2x} \right) \right] \\
& \left( D \right)\sin (\log x) \\
\end{align}\]
Answer
553.2k+ views
Hint: To solve this problem, we will need to know the differentiation of composite functions of the form \[y=f\left( g\left( x \right) \right)\]. The derivative of the composite functions \[\dfrac{dy}{dx}\] is evaluated as \[y=\dfrac{df\left( g\left( x \right) \right)}{d\left( g\left( x \right) \right)}\times \dfrac{dg\left( x \right)}{dx}\]. For this problem, we have the composite function of three different functions. We will use a similar method to differentiate it.
Complete step-by-step solution:
We are given that \[f(x)=\sin (\log x)\] and \[y=f\left( \dfrac{2x+3}{3-2x} \right)\], we are asked to evaluate \[\dfrac{dy}{dx}\]. We get the expression for y as, \[y=\sin \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\]. As we can see that y is a composite function of the form \[f\left( g\left( h\left( x \right) \right) \right)\]. Here, \[f\left( x \right)=\sin x\], \[g\left( x \right)=\log x \And h\left( x \right)=\dfrac{2x+3}{3-2x}\].
As we know that the derivative of \[\sin x\] with respect to x is \[\cos x\]. Thus, the derivatives of \[f\left( g\left( h\left( x \right) \right) \right)\] with respect to \[g\left( h\left( x \right) \right)\] is \[\dfrac{df\left( g\left( h\left( x \right) \right) \right)}{dg\left( h\left( x \right) \right)}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\].
The derivative of \[\log x\] with respect to x is \[\dfrac{1}{x}\]. Thus, the derivative of \[g\left( h\left( x \right) \right)\] with respect to \[h\left( x \right)\] is \[\dfrac{dg\left( h\left( x \right) \right)}{dh\left( x \right)}=\dfrac{1}{\dfrac{2x+3}{3-2x}}=\dfrac{3-2x}{2x+3}\]
The derivative of \[\dfrac{3-2x}{2x+3}\] with respect to x is \[\dfrac{dh(x)}{dx}=\dfrac{2(3-2x)-(-2)(2x+3)}{{{\left( 3-2x \right)}^{2}}}\], simplifying this expression, we get \[\dfrac{dh(x)}{dx}=\dfrac{12}{{{\left( 3-2x \right)}^{2}}}\]
Using the derivative of a composite function, we can differentiate the function \[y=\sin \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\] as,
\[\dfrac{dy}{dx}=\dfrac{df\left( g\left( h\left( x \right) \right) \right)}{dg\left( h\left( x \right) \right)}\times \dfrac{dg\left( h\left( x \right) \right)}{dh\left( x \right)}\times \dfrac{dh(x)}{dx}\]
Substituting the values of the derivatives in the above expression, we get
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\times \dfrac{3-2x}{2x+3}\times \dfrac{12}{{{\left( 3-2x \right)}^{2}}}\]
Simplifying the above expression, we get
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{\left( 3-2x \right)\left( 2x+3 \right)}\]
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}}\]
Thus, the derivative of the given expression is \[\dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}}\].
Hence, the answer is an option \[\left( B \right)\].
Note: We can use this method to find the derivative of a composite function having more functions than this. In general words, \[y=f\left( g(h(......(x))) \right)\] can be differentiated by differentiating the function outside with respect to the function inside it.
Complete step-by-step solution:
We are given that \[f(x)=\sin (\log x)\] and \[y=f\left( \dfrac{2x+3}{3-2x} \right)\], we are asked to evaluate \[\dfrac{dy}{dx}\]. We get the expression for y as, \[y=\sin \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\]. As we can see that y is a composite function of the form \[f\left( g\left( h\left( x \right) \right) \right)\]. Here, \[f\left( x \right)=\sin x\], \[g\left( x \right)=\log x \And h\left( x \right)=\dfrac{2x+3}{3-2x}\].
As we know that the derivative of \[\sin x\] with respect to x is \[\cos x\]. Thus, the derivatives of \[f\left( g\left( h\left( x \right) \right) \right)\] with respect to \[g\left( h\left( x \right) \right)\] is \[\dfrac{df\left( g\left( h\left( x \right) \right) \right)}{dg\left( h\left( x \right) \right)}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\].
The derivative of \[\log x\] with respect to x is \[\dfrac{1}{x}\]. Thus, the derivative of \[g\left( h\left( x \right) \right)\] with respect to \[h\left( x \right)\] is \[\dfrac{dg\left( h\left( x \right) \right)}{dh\left( x \right)}=\dfrac{1}{\dfrac{2x+3}{3-2x}}=\dfrac{3-2x}{2x+3}\]
The derivative of \[\dfrac{3-2x}{2x+3}\] with respect to x is \[\dfrac{dh(x)}{dx}=\dfrac{2(3-2x)-(-2)(2x+3)}{{{\left( 3-2x \right)}^{2}}}\], simplifying this expression, we get \[\dfrac{dh(x)}{dx}=\dfrac{12}{{{\left( 3-2x \right)}^{2}}}\]
Using the derivative of a composite function, we can differentiate the function \[y=\sin \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\] as,
\[\dfrac{dy}{dx}=\dfrac{df\left( g\left( h\left( x \right) \right) \right)}{dg\left( h\left( x \right) \right)}\times \dfrac{dg\left( h\left( x \right) \right)}{dh\left( x \right)}\times \dfrac{dh(x)}{dx}\]
Substituting the values of the derivatives in the above expression, we get
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\times \dfrac{3-2x}{2x+3}\times \dfrac{12}{{{\left( 3-2x \right)}^{2}}}\]
Simplifying the above expression, we get
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{\left( 3-2x \right)\left( 2x+3 \right)}\]
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}}\]
Thus, the derivative of the given expression is \[\dfrac{dy}{dx}=\cos \left( \log \left( \dfrac{2x+3}{3-2x} \right) \right)\dfrac{12}{9-4{{x}^{2}}}\].
Hence, the answer is an option \[\left( B \right)\].
Note: We can use this method to find the derivative of a composite function having more functions than this. In general words, \[y=f\left( g(h(......(x))) \right)\] can be differentiated by differentiating the function outside with respect to the function inside it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

