Answer
Verified
372.6k+ views
Hint: We are given equations in the matrix form. So, we will first create a matrix on either side and then we will compare the elements. After doing that we will calculate the value of $k$. We need to find $A^2$ as well, which means we have to multiply the matrix $A$ by itself. The matrix multiplication is a bit of a complex process because it is not done like the real numbers. After simplifying the left hand side of the equation, we will compare the matrices element-wise and obtain the result.
Complete step-by-step solution:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( -2\times 4 \right) & 3\times -2+\left( -2\times -2 \right) \\
4\times 3+\left( -2\times 4 \right) & 4\times -2+\left( -2\times -2 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
$A^2=kA-2I$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k & -2k \\
4k & -2k \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k-2 & -2k \\
4k & -2k-2 \\
\end{matrix} \right]$
Now, we compare the elements, we get:
$1=3k-2$
$\Rightarrow 3k=3$
$\Rightarrow k=1$
To cross verify, we use one more equation:
$-2k=-2$
$\Rightarrow k=1$
Since both the values match, we have found the value of $k$ correctly.
Hence, $k=1$
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check with two or three equations, if the value of $k$ occurs to be different in some cases, then there is a possibility that you have made a calculation mistake.
Complete step-by-step solution:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( -2\times 4 \right) & 3\times -2+\left( -2\times -2 \right) \\
4\times 3+\left( -2\times 4 \right) & 4\times -2+\left( -2\times -2 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
$A^2=kA-2I$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=k\left[ \begin{matrix}
3 & -2 \\
4 & -2 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k & -2k \\
4k & -2k \\
\end{matrix} \right]-\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & -2 \\
4 & -4 \\
\end{matrix} \right]=\left[ \begin{matrix}
3k-2 & -2k \\
4k & -2k-2 \\
\end{matrix} \right]$
Now, we compare the elements, we get:
$1=3k-2$
$\Rightarrow 3k=3$
$\Rightarrow k=1$
To cross verify, we use one more equation:
$-2k=-2$
$\Rightarrow k=1$
Since both the values match, we have found the value of $k$ correctly.
Hence, $k=1$
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check with two or three equations, if the value of $k$ occurs to be different in some cases, then there is a possibility that you have made a calculation mistake.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE