     Question Answers

# If two events A and B are such that $P({{A}^{c}})=0.3,P(B)=0.4$ and $P(A{{B}^{c}})=0.5$, then $P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]$ is equal to(a) $\dfrac{1}{2}$ (b) $\dfrac{1}{3}$ (c) $\dfrac{1}{4}$ (d) None of these  Hint: Taking the given probabilities of A and B events, first find out $P(A),P({{B}^{c}})$. Then using this, find out other probability identities like $P(A\cap {{B}^{c}})$ , etc.

As per the given information, A and B are two events, such that $P({{A}^{c}})=0.3,P(B)=0.4$.
Now we know the probability that an event does not occur is one minus the probability that the event occurs, so
$P({{A}^{c}})=1-P(A)$
Substituting the given value, we get
0.3 = 1 – P(A)
Or, P(A) = 1 – 0.3 =0.7 ………….(i)
Similarly, we will find out for event B, i.e.,
$P({{B}^{c}})=1-P(B)$
Substituting the given value, we get
$P({{B}^{c}})=1-0.4=0.6........(ii)$
Now we have to find,
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]$
This can be written as,
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{P\left( A\cup {{B}^{c}} \right)}.........(iii)$
Observe the denominator, it is the union of event A and non occurring of event B, So
$P\left( A\cup {{B}^{c}} \right)=P(A)+P({{B}^{c}})-P(A{{B}^{c}})$
Now substituting the corresponding values from equation (i), (ii) and given value, we get
$P\left( A\cup {{B}^{c}} \right)=0.7+0.6-0.5=0.8$
Substituting this value in equation (iii), we get
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{P\left[ B\left( A\cup {{B}^{c}} \right) \right]}{0.8}.........(iv)$
Now we will simplify the numerator by opening the bracket as shown below:
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right)\cup \left( B\cap {{B}^{c}} \right) \right]$
But we know intersection of an event occurring and not occurring is one, so the above equation becomes,
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P\left[ \left( B\cap A \right) \right]........(v)$
Now we know,
\begin{align} & P\left( A\cap {{B}^{c}} \right)=P(A)-P\left( A\cap B \right) \\ & \Rightarrow P\left( A\cap B \right)=P(A)-P\left( A\cap {{B}^{c}} \right) \\ \end{align}
Using this in equation (v), we get
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)$
We can write $P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right)$, so the above equation becomes,
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A{{B}^{c}} \right)$
Substituting the values from equation (i) and the given values, we get
$P\left[ B\left( A\cup {{B}^{c}} \right) \right]=0.7-0.5=0.2$
Substituting this value in equation (ii), we get
$P\left[ \dfrac{B}{\left( A\cup {{B}^{c}} \right)} \right]=\dfrac{0.2}{0.8}=\dfrac{1}{4}$
This is the required probability.

Note: Students get confused while applying the formula. Students should learn and understand the concept of probability clearly. Student gets confused to make out that $P\left( A\cap {{B}^{c}} \right)=P\left( A{{B}^{c}} \right)$, and they get stuck to find out the value $P\left[ B\left( A\cup {{B}^{c}} \right) \right]=P(A)-P\left( A\cap {{B}^{c}} \right)$, and won’t be able to get the answer.
View Notes
Independent Events and Probability  Types of Events in Probability  Difference Between Mutually Exclusive and Independent Events  Mutually Exclusive Events  Chance and Probability  Probability and Statistics  The Difference Between an Animal that is A Regulator and One that is A Conformer  Probability Symbols and Statistics Symbols  Difference Between Chlorophyll a and Chlorophyll b  Post Fertilization Events in Plants  