
If the vector \[6{\text{i - 3j - 6k}}\] is decomposed into vectors parallel and perpendicular to the vector ${\text{i + j + k}}$ then find the vectors.
A) $ - \left( {{\text{i + j + k}}} \right)$& ${\text{7i - 2j - 5k}}$
B)$ - 2\left( {{\text{i + j + k}}} \right)$ & ${\text{i - j - 4k}}$
C)$2\left( {{\text{i + j + k}}} \right)$ & ${\text{4i - 5j - 8k}}$
D) $3\left( {{\text{i + j + k}}} \right)$ & ${\text{i - j + k}}$
Answer
591.9k+ views
Hint: A vector is decomposed into two vectors (say ‘x’ and ‘y’) which are parallel and perpendicular to the vector ${\text{i + j + k}}$. We can write x=m$\left( {{\text{i + j + k}}} \right)$ where m is a scalar quantity as c is parallel to${\text{i + j + k}}$. And y is perpendicular to it so their dot product will be zero. Assume d to be ${{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$ where ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$ . Now add the value of ‘x’ and ‘y’ and equate it to a given vector (\[6{\text{i - 3j - 6k}}\]). Solve and find the vectors.
Complete step-by-step answer:
The given vector is=\[6{\text{i - 3j - 6k}}\] which is decomposed into two vectors such that they are parallel and perpendicular to the vector${\text{i + j + k}}$. Let us assume the two vectors to be x and y . Then we can write- \[6{\text{i - 3j - 6k}}\]=x + y --- (i)
Here given that x is parallel to ${\text{i + j + k}}$ so x= m$\left( {{\text{i + j + k}}} \right)$ where m is scalar.
Also given, y is perpendicular to ${\text{i + j + k}}$ so their dot product will be zero. Assume y=${{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$ where${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$. Now we put the values of x and y in eq. (i).
$ \Rightarrow 6{\text{i - 3j - 6k = m}}\left( {{\text{i + j + k}}} \right) + {{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$
On multiplying m with the vectors and separating the common vectors we get,
\[
\Rightarrow 6{\text{i - 3j - 6k = mi + mj + mk}} + {{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}} \\
\Rightarrow 6{\text{i - 3j - 6k = mi}} + {{\text{a}}_1}{\text{i + mj}} + {{\text{a}}_2}{\text{j + mk}} + {{\text{a}}_3}{\text{k}} \\
\]
Now taking i, j and k common, we get-
$ \Rightarrow 6{\text{i - 3j - 6k = }}\left( {{\text{m}} + {{\text{a}}_1}} \right){\text{i + }}\left( {{\text{m + }}{{\text{a}}_2}} \right){\text{j + }}\left( {{\text{m + }}{{\text{a}}_3}} \right){\text{k}}$
On comparing the coefficient of i, j and k, we get
$
\Rightarrow 6 = {\text{m}} + {{\text{a}}_1} \\
\Rightarrow - 3 = {\text{m}} + {{\text{a}}_2} \\
\Rightarrow - 6 = {\text{m}} + {{\text{a}}_3} \\
\\
$
On adding the three values we get,
\[ \Rightarrow 3{\text{m + }}{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 6 - 3 - 6 = - 3\]
We also know that ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$. So putting this value, we get the value of m,
$ \Rightarrow 3{\text{m}} = - 3 \Rightarrow {\text{m}} = - 1$
Now we know the value of m so we can find the value of ${{\text{a}}_1},{{\text{a}}_2}$ and ${{\text{a}}_3}$ ,
$
\Rightarrow {{\text{a}}_1} = 6 + 1 = 5 \\
\Rightarrow {{\text{a}}_2} = - 3 + 1 = - 2 \\
\Rightarrow {{\text{a}}_3} = - 6 + 1 = - 5 \\
$
So putting these values in eq. (i) we get-
$ \Rightarrow 6{\text{i - 3j - 6k}} = - 1\left( {{\text{i + j + k}}} \right) + \left( {{\text{7i - 2j - 5k}}} \right)$
Hence option ‘A’ is the correct answer.
Note: Here, the student may get confused that how ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$. So remember we said that since y is perpendicular to ${\text{i + j + k}}$ so their dot product will be zero. And here, we assumed that y=${{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$.
So $\left( {{{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}} \right).\left( {{\text{i + j + k}}} \right) = 0$
We will multiply the coefficient of i, j and k.
$ \Rightarrow \left( {{{\text{a}}_1} \times 1} \right) + \left( {{{\text{a}}_2} \times 1} \right) + \left( {{{\text{a}}_3} \times 1} \right) = 0$
Which means that ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$.
Complete step-by-step answer:
The given vector is=\[6{\text{i - 3j - 6k}}\] which is decomposed into two vectors such that they are parallel and perpendicular to the vector${\text{i + j + k}}$. Let us assume the two vectors to be x and y . Then we can write- \[6{\text{i - 3j - 6k}}\]=x + y --- (i)
Here given that x is parallel to ${\text{i + j + k}}$ so x= m$\left( {{\text{i + j + k}}} \right)$ where m is scalar.
Also given, y is perpendicular to ${\text{i + j + k}}$ so their dot product will be zero. Assume y=${{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$ where${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$. Now we put the values of x and y in eq. (i).
$ \Rightarrow 6{\text{i - 3j - 6k = m}}\left( {{\text{i + j + k}}} \right) + {{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$
On multiplying m with the vectors and separating the common vectors we get,
\[
\Rightarrow 6{\text{i - 3j - 6k = mi + mj + mk}} + {{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}} \\
\Rightarrow 6{\text{i - 3j - 6k = mi}} + {{\text{a}}_1}{\text{i + mj}} + {{\text{a}}_2}{\text{j + mk}} + {{\text{a}}_3}{\text{k}} \\
\]
Now taking i, j and k common, we get-
$ \Rightarrow 6{\text{i - 3j - 6k = }}\left( {{\text{m}} + {{\text{a}}_1}} \right){\text{i + }}\left( {{\text{m + }}{{\text{a}}_2}} \right){\text{j + }}\left( {{\text{m + }}{{\text{a}}_3}} \right){\text{k}}$
On comparing the coefficient of i, j and k, we get
$
\Rightarrow 6 = {\text{m}} + {{\text{a}}_1} \\
\Rightarrow - 3 = {\text{m}} + {{\text{a}}_2} \\
\Rightarrow - 6 = {\text{m}} + {{\text{a}}_3} \\
\\
$
On adding the three values we get,
\[ \Rightarrow 3{\text{m + }}{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 6 - 3 - 6 = - 3\]
We also know that ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$. So putting this value, we get the value of m,
$ \Rightarrow 3{\text{m}} = - 3 \Rightarrow {\text{m}} = - 1$
Now we know the value of m so we can find the value of ${{\text{a}}_1},{{\text{a}}_2}$ and ${{\text{a}}_3}$ ,
$
\Rightarrow {{\text{a}}_1} = 6 + 1 = 5 \\
\Rightarrow {{\text{a}}_2} = - 3 + 1 = - 2 \\
\Rightarrow {{\text{a}}_3} = - 6 + 1 = - 5 \\
$
So putting these values in eq. (i) we get-
$ \Rightarrow 6{\text{i - 3j - 6k}} = - 1\left( {{\text{i + j + k}}} \right) + \left( {{\text{7i - 2j - 5k}}} \right)$
Hence option ‘A’ is the correct answer.
Note: Here, the student may get confused that how ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$. So remember we said that since y is perpendicular to ${\text{i + j + k}}$ so their dot product will be zero. And here, we assumed that y=${{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}$.
So $\left( {{{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}} \right).\left( {{\text{i + j + k}}} \right) = 0$
We will multiply the coefficient of i, j and k.
$ \Rightarrow \left( {{{\text{a}}_1} \times 1} \right) + \left( {{{\text{a}}_2} \times 1} \right) + \left( {{{\text{a}}_3} \times 1} \right) = 0$
Which means that ${{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

