Answer
Verified
434.7k+ views
Hint: We use the concept of binomial expansion and count the value of r which gives the third term of the expansion. Using base 10, solve the logarithm values using the formulas of log. Form a quadratic equation in the end and use factorization method to solve for the value.
A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\] through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^r}{{(b)}^{n - r}}} \]
Formula of combination is given by \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\log (mn) = \log m + \log n\] and \[\log ({m^n}) = n\log m\]
Complete step-by-step solution:
We are given the term \[{\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}\]
Use binomial expansion to expand this bracket, here \[a = x,b = {x^{{{\log }_{10}}x}},n = 5\]
\[{\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}{ = ^5}{C_0}{(x)^0}{({x^{{{\log }_{10}}x}})^{5 - 0}}{ + ^5}{C_1}{(x)^1}{({x^{{{\log }_{10}}x}})^{5 - 1}}{ + ^5}{C_2}{(x)^2}{({x^{{{\log }_{10}}x}})^{5 - 2}} + ..{ + ^5}{C_5}{(x)^5}{({x^{{{\log }_{10}}x}})^{5 - 5}}\]
Third term of the expansion is \[^5{C_2}{(x)^2}{({x^{{{\log }_{10}}x}})^{5 - 2}}\]..............… (1)
Since we are given the value of third term is \[{10^6}\]
Equate the value of third term from equation (1)
\[{ \Rightarrow ^5}{C_2}{(x)^2}{({x^{{{\log }_{10}}x}})^{5 - 2}} = {10^6}\]
Use the formula of combination to solve LHS
\[ \Rightarrow \dfrac{{5!}}{{3!2!}}{(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^6}\]
Write numerator using factorial expansion
\[ \Rightarrow \dfrac{{5 \times 4 \times 3!}}{{3!2!}}{(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^6}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow 10{(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^6}\]
Divide both sides by 10
\[ \Rightarrow \dfrac{{10{{(x)}^2}{{({x^{{{\log}_{10}}x}})}^3}}}{{10}} = \dfrac{{{{10}^6}}}{{10}}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow {(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^5}\]...............… (2)
We apply \[{\log _{10}}\]on both sides of the equation
\[ \Rightarrow {\log _{10}}\left\{ {{{(x)}^2}{{({x^{{{\log }_{10}}x}})}^3}} \right\} = {\log _{10}}\left\{ {{{10}^5}} \right\}\]
Since we law of log tells us \[\log (mn) = \log (m) + \log (n)\]
\[ \Rightarrow {\log _{10}}\left\{ {{{(x)}^2}} \right\} + {\log _{10}}\left\{ {{{({x^{{{\log }_{10}}x}})}^3}} \right\} = {\log _{10}}\left\{ {{{10}^5}} \right\}\]
Also, law of log gives \[\log ({m^n}) = n\log (m)\]
\[ \Rightarrow 2{\log _{10}}(x) + 3{\log _{10}}({x^{{{\log }_{10}}x}}) = 5{\log _{10}}\left\{ {10} \right\}\]
We know log base 10 cancels 10
\[ \Rightarrow 2{\log _{10}}(x) + 3{\log _{10}}({x^{{{\log }_{10}}x}}) = 5\]
Also, law of log gives \[\log ({m^n}) = n\log (m)\]
\[ \Rightarrow 2{\log _{10}}(x) + 3\left\{ {{{\log }_{10}}x({{\log }_{10}}x)} \right\} = 5\]
\[ \Rightarrow 2{\log _{10}}(x) + 3{({\log _{10}}x)^2} - 5 = 0\].................… (3)
Put \[({\log _{10}}x) = y\]
Equation (3) converts into
\[ \Rightarrow 3{y^2} + 2y - 5 = 0\]
We can write \[2y = - 3y + 5y\]
\[ \Rightarrow 3{y^2} - 3y + 5y - 5 = 0\]
Take common factors
\[ \Rightarrow 3y(y - 1) + 5(y - 1) = 0\]
\[ \Rightarrow (3y + 5)(y - 1) = 0\]
Equate both factors to zero
\[ \Rightarrow 3y + 5 = 0\]
Shift constant to RHS
\[ \Rightarrow 3y = - 5\]
Divide both sides by 3
\[ \Rightarrow y = \dfrac{{ - 5}}{3}\].....................… (4)
Also, \[y - 1 = 0\]
Shift constant to RHS
\[ \Rightarrow y = 1\]..................… (5)
We know \[({\log _{10}}x) = y\]
\[ \Rightarrow ({\log _{10}}x) = 1\]
We can write \[1 = {\log _{10}}\left( {10} \right)\]
\[ \Rightarrow {\log _{10}}\left( x \right) = {\log _{10}}\left( {10} \right)\]
Cancel log base 10 on both sides of the equation
\[ \Rightarrow x = 10\]
\[\therefore \]Option B is the correct answer.
Note: Students are likely to get confused while applying log rules as they are not familiar with base 10. Students are advised to compare the laws of general logarithm with base 10 logarithms as they are similar. Many students make mistakes when shifting values from one side to another, always changing the sign from positive to negative and vice versa when shifting values from one side to other side.
A binomial expansion helps us to expand expressions of the form \[{(a + b)^n}\] through the formula \[{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^r}{{(b)}^{n - r}}} \]
Formula of combination is given by \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
\[\log (mn) = \log m + \log n\] and \[\log ({m^n}) = n\log m\]
Complete step-by-step solution:
We are given the term \[{\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}\]
Use binomial expansion to expand this bracket, here \[a = x,b = {x^{{{\log }_{10}}x}},n = 5\]
\[{\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}{ = ^5}{C_0}{(x)^0}{({x^{{{\log }_{10}}x}})^{5 - 0}}{ + ^5}{C_1}{(x)^1}{({x^{{{\log }_{10}}x}})^{5 - 1}}{ + ^5}{C_2}{(x)^2}{({x^{{{\log }_{10}}x}})^{5 - 2}} + ..{ + ^5}{C_5}{(x)^5}{({x^{{{\log }_{10}}x}})^{5 - 5}}\]
Third term of the expansion is \[^5{C_2}{(x)^2}{({x^{{{\log }_{10}}x}})^{5 - 2}}\]..............… (1)
Since we are given the value of third term is \[{10^6}\]
Equate the value of third term from equation (1)
\[{ \Rightarrow ^5}{C_2}{(x)^2}{({x^{{{\log }_{10}}x}})^{5 - 2}} = {10^6}\]
Use the formula of combination to solve LHS
\[ \Rightarrow \dfrac{{5!}}{{3!2!}}{(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^6}\]
Write numerator using factorial expansion
\[ \Rightarrow \dfrac{{5 \times 4 \times 3!}}{{3!2!}}{(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^6}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow 10{(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^6}\]
Divide both sides by 10
\[ \Rightarrow \dfrac{{10{{(x)}^2}{{({x^{{{\log}_{10}}x}})}^3}}}{{10}} = \dfrac{{{{10}^6}}}{{10}}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow {(x)^2}{({x^{{{\log }_{10}}x}})^3} = {10^5}\]...............… (2)
We apply \[{\log _{10}}\]on both sides of the equation
\[ \Rightarrow {\log _{10}}\left\{ {{{(x)}^2}{{({x^{{{\log }_{10}}x}})}^3}} \right\} = {\log _{10}}\left\{ {{{10}^5}} \right\}\]
Since we law of log tells us \[\log (mn) = \log (m) + \log (n)\]
\[ \Rightarrow {\log _{10}}\left\{ {{{(x)}^2}} \right\} + {\log _{10}}\left\{ {{{({x^{{{\log }_{10}}x}})}^3}} \right\} = {\log _{10}}\left\{ {{{10}^5}} \right\}\]
Also, law of log gives \[\log ({m^n}) = n\log (m)\]
\[ \Rightarrow 2{\log _{10}}(x) + 3{\log _{10}}({x^{{{\log }_{10}}x}}) = 5{\log _{10}}\left\{ {10} \right\}\]
We know log base 10 cancels 10
\[ \Rightarrow 2{\log _{10}}(x) + 3{\log _{10}}({x^{{{\log }_{10}}x}}) = 5\]
Also, law of log gives \[\log ({m^n}) = n\log (m)\]
\[ \Rightarrow 2{\log _{10}}(x) + 3\left\{ {{{\log }_{10}}x({{\log }_{10}}x)} \right\} = 5\]
\[ \Rightarrow 2{\log _{10}}(x) + 3{({\log _{10}}x)^2} - 5 = 0\].................… (3)
Put \[({\log _{10}}x) = y\]
Equation (3) converts into
\[ \Rightarrow 3{y^2} + 2y - 5 = 0\]
We can write \[2y = - 3y + 5y\]
\[ \Rightarrow 3{y^2} - 3y + 5y - 5 = 0\]
Take common factors
\[ \Rightarrow 3y(y - 1) + 5(y - 1) = 0\]
\[ \Rightarrow (3y + 5)(y - 1) = 0\]
Equate both factors to zero
\[ \Rightarrow 3y + 5 = 0\]
Shift constant to RHS
\[ \Rightarrow 3y = - 5\]
Divide both sides by 3
\[ \Rightarrow y = \dfrac{{ - 5}}{3}\].....................… (4)
Also, \[y - 1 = 0\]
Shift constant to RHS
\[ \Rightarrow y = 1\]..................… (5)
We know \[({\log _{10}}x) = y\]
\[ \Rightarrow ({\log _{10}}x) = 1\]
We can write \[1 = {\log _{10}}\left( {10} \right)\]
\[ \Rightarrow {\log _{10}}\left( x \right) = {\log _{10}}\left( {10} \right)\]
Cancel log base 10 on both sides of the equation
\[ \Rightarrow x = 10\]
\[\therefore \]Option B is the correct answer.
Note: Students are likely to get confused while applying log rules as they are not familiar with base 10. Students are advised to compare the laws of general logarithm with base 10 logarithms as they are similar. Many students make mistakes when shifting values from one side to another, always changing the sign from positive to negative and vice versa when shifting values from one side to other side.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell