Answer
Verified
491.7k+ views
Hint: Use the formula of trigonometry $\operatorname{cosx}+cosy=2cos\left( \dfrac{x+y}{2} \right)cos\left( \dfrac{x-y}{2} \right)$. Apply the same to the expression given in the question. Then use the formula $\dfrac{\left( 2n+1 \right)\pi }{2}$ to find values where $\cos \theta =0$.
Complete step-by-step answer:
We are given an equation $\cos p\theta +\cos q\theta =0,p>q>0$.
We need to find its solution, so we will manipulate the given equation to find its solution.
We can use the general formula of trigonometry that is $\operatorname{cosx}+cosy=2cos\left( \dfrac{x+y}{2} \right)cos\left( \dfrac{x-y}{2} \right)$ .
$\cos p\theta +\cos q\theta =0,p>q>0$
Using the formula mentioned above we will get
$2\cos \left( \dfrac{p+q}{2} \right)\theta \cos \left( \dfrac{p-q}{2} \right)\theta =0.....\left( i \right)$
Now to get the solution, equate both its factors one by one with zero.
Now we will equate each factor to zero and we get,
$\cos \left( \dfrac{p+q}{2} \right)\theta =0$
We know the general solution when $\cos \theta =0$ then $\theta $ is equal to $\left( 2n+1 \right)\dfrac{\pi }{2}$ where n belongs to an integer.
So it’s clear from the general solution that,
$\left( \dfrac{p+q}{2} \right)\theta =\left( 2n+1 \right)\dfrac{\pi }{2}....\left( ii \right)$
where n belongs to integers.
And, similarly again we use the general solution formula, $\cos \theta =0$ then $\theta $ is equal to $\left( 2n+1 \right)\dfrac{\pi }{2}$ where n belongs to an integer for the second factor as well.
$\cos \left( \dfrac{p-q}{2} \right)\theta =0$
So,
\[\left( \dfrac{p-q}{2} \right)\theta =\left( 2n+1 \right)\dfrac{\pi }{2}....\left( iii \right)\]
where n belongs to integer
Now it is given in the question that solution of it would form an A.P so observing equation (ii) and equation (iii) we can observe that on putting the value of $n=1,2,3,,,,$ and so on we will get a common difference in each term i.e.
For equation (ii)
When $n=1$
$\left( \dfrac{p+q}{2} \right)\theta =\dfrac{3\pi }{2}$
When $n=2$
$\left( \dfrac{p+q}{2} \right)\theta =\dfrac{5\pi }{2}$
And so on.
We get a common difference $\pi $ for every successive value of n.
So,
$\begin{align}
& \left( \dfrac{p+q}{2} \right)\theta =\pi \\
& \theta =\dfrac{2\pi }{p+q} \\
\end{align}$
We get one of the solutions of the given equation.
$\theta =\dfrac{2\pi }{p+q}.....\left( iv \right)$
Now for equation (iii)
When $n=1$
$\left( \dfrac{p-q}{2} \right)\theta =\dfrac{3\pi }{2}$
When $n=2$
$\left( \dfrac{p-q}{2} \right)\theta =\dfrac{5\pi }{2}$
And so on.
We get a common difference $\pi $ for every successive value of n.
So,
$\begin{align}
& \left( \dfrac{p-q}{2} \right)\theta =\pi \\
& \theta =\dfrac{2\pi }{p-q} \\
\end{align}$
We get one of the solutions of the given equation.
$\theta =\dfrac{2\pi }{p-q}....\left( iv \right)$
Now we need to find the smallest solution for $\theta $,
So,
We will observe equation (iii) and (iv) and it is given in the question that $p>q>0$, so $p-q$ is less than $p+q$ and we know that if denominator value is greater, then fraction will be smaller. So, $\theta =\dfrac{2\pi }{p+q}$ the value of $\theta $ is much smaller than $\theta =\dfrac{2\pi }{p-q}$.
So the correct option is b.
Note: The possibility of mistake that could be done here is not considering both solutions of equation i.e. forgetting to evaluate the solution $\theta =\dfrac{2\pi }{p-q}$ although it will be rejected later on as it is not the smallest solution for $\theta $ . But we have to show that process in the solution.
Complete step-by-step answer:
We are given an equation $\cos p\theta +\cos q\theta =0,p>q>0$.
We need to find its solution, so we will manipulate the given equation to find its solution.
We can use the general formula of trigonometry that is $\operatorname{cosx}+cosy=2cos\left( \dfrac{x+y}{2} \right)cos\left( \dfrac{x-y}{2} \right)$ .
$\cos p\theta +\cos q\theta =0,p>q>0$
Using the formula mentioned above we will get
$2\cos \left( \dfrac{p+q}{2} \right)\theta \cos \left( \dfrac{p-q}{2} \right)\theta =0.....\left( i \right)$
Now to get the solution, equate both its factors one by one with zero.
Now we will equate each factor to zero and we get,
$\cos \left( \dfrac{p+q}{2} \right)\theta =0$
We know the general solution when $\cos \theta =0$ then $\theta $ is equal to $\left( 2n+1 \right)\dfrac{\pi }{2}$ where n belongs to an integer.
So it’s clear from the general solution that,
$\left( \dfrac{p+q}{2} \right)\theta =\left( 2n+1 \right)\dfrac{\pi }{2}....\left( ii \right)$
where n belongs to integers.
And, similarly again we use the general solution formula, $\cos \theta =0$ then $\theta $ is equal to $\left( 2n+1 \right)\dfrac{\pi }{2}$ where n belongs to an integer for the second factor as well.
$\cos \left( \dfrac{p-q}{2} \right)\theta =0$
So,
\[\left( \dfrac{p-q}{2} \right)\theta =\left( 2n+1 \right)\dfrac{\pi }{2}....\left( iii \right)\]
where n belongs to integer
Now it is given in the question that solution of it would form an A.P so observing equation (ii) and equation (iii) we can observe that on putting the value of $n=1,2,3,,,,$ and so on we will get a common difference in each term i.e.
For equation (ii)
When $n=1$
$\left( \dfrac{p+q}{2} \right)\theta =\dfrac{3\pi }{2}$
When $n=2$
$\left( \dfrac{p+q}{2} \right)\theta =\dfrac{5\pi }{2}$
And so on.
We get a common difference $\pi $ for every successive value of n.
So,
$\begin{align}
& \left( \dfrac{p+q}{2} \right)\theta =\pi \\
& \theta =\dfrac{2\pi }{p+q} \\
\end{align}$
We get one of the solutions of the given equation.
$\theta =\dfrac{2\pi }{p+q}.....\left( iv \right)$
Now for equation (iii)
When $n=1$
$\left( \dfrac{p-q}{2} \right)\theta =\dfrac{3\pi }{2}$
When $n=2$
$\left( \dfrac{p-q}{2} \right)\theta =\dfrac{5\pi }{2}$
And so on.
We get a common difference $\pi $ for every successive value of n.
So,
$\begin{align}
& \left( \dfrac{p-q}{2} \right)\theta =\pi \\
& \theta =\dfrac{2\pi }{p-q} \\
\end{align}$
We get one of the solutions of the given equation.
$\theta =\dfrac{2\pi }{p-q}....\left( iv \right)$
Now we need to find the smallest solution for $\theta $,
So,
We will observe equation (iii) and (iv) and it is given in the question that $p>q>0$, so $p-q$ is less than $p+q$ and we know that if denominator value is greater, then fraction will be smaller. So, $\theta =\dfrac{2\pi }{p+q}$ the value of $\theta $ is much smaller than $\theta =\dfrac{2\pi }{p-q}$.
So the correct option is b.
Note: The possibility of mistake that could be done here is not considering both solutions of equation i.e. forgetting to evaluate the solution $\theta =\dfrac{2\pi }{p-q}$ although it will be rejected later on as it is not the smallest solution for $\theta $ . But we have to show that process in the solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths