
If the points $\left( {2,0} \right){\text{, }}\left( {0,1} \right),{\text{ }}\left( {4,5} \right),{\text{ }}$and $\left( {0,c} \right)$ are concyclic, then the value of c is
A. $-1$
B. $1$
C. $\dfrac{{14}}{3}$
D. $ - \dfrac{{14}}{3}$
Answer
548.4k+ views
Hint: In order to solve this equation, we have to find out the value of c by using a circle equation that passes through the point (2,0), (0,1), (4,5), (0,c).
Complete step-by-step answer:
Concyclic points – A set of points are said to be concyclic, if they lie on a common circle. All concyclic points are the same distance from the centre of the circle.
By using Circle equation we get , ${x^2} + {y^2} + 2gx + 2fy + c = 0$
All the points (2,0), (0,1), (4,5), (0,c) will lie on this circle
For point A (2,0) -
${\left( 2 \right)^2} + {\left( 0 \right)^2} + 2 \times g \times 2 + c = 0$
$4 + 4g + c = 0$ ….. (1)
For point B (0,1)
${\left( 1 \right)^2} + {\text{ 2f}} \times {\text{1 + }}c{\text{ = 0}}$
$2f{\text{ + c + 1 = 0}}$ ….. (2)
For point (4,5)
$
{\left( 4 \right)^2} + {\left( 5 \right)^2} + 2g \times 4 + 2f \times 5 + c = 0 \\
41{\text{ }} + 8g{\text{ }} + 10f + c = 0{\text{ }}.....{\text{(3)}} \\
$
By solving these equations we get,
From $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
c = - 4 - 4g \\
{\text{ }} \\
$
Put the value of c in equation $(3)$
$
{\text{ }}41 + 8g + 10f - 4 - 4g = 0 \\
\Rightarrow {\text{ 37 + 4g + 10f = 0 }}....{\text{ (4)}} \\
$
Again, put the value of ‘c’ from equation $(1)$, in equation $(2)$, we get,
$
{\text{ }}1 + 2f + c = 0 \\
\Rightarrow 1 + 2f - 4 - 4g = 0 \\
\Rightarrow 2f - 4g - 3 = 0{\text{ }}.....{\text{(5) }} \\
$
From equation, $(4)$ and $(5)$, we get,
$
37 + 4g + 10f = 0 \\
\& {\text{ 2f - 4g - 3 = 0}} \\
$
$
\Rightarrow 4g + 10f = - 37{\text{ }}...{\text{(A)}} \\
\Rightarrow {\text{2}}f - 4g = 3{\text{ }}....{\text{ (B)}} \\
$
From equation $(A)$, we get
$
\Rightarrow 4g = - 37 - 10f \\
\Rightarrow g = \dfrac{{ - 37 - 10f}}{4} \\
\Rightarrow g = \dfrac{{ - 1}}{4}\left( {37 - 10f} \right){\text{ }} \to {\text{(C)}} \\
$
Put the value of $g$ from equation $(C)$ in $(B)$, we get
$
{\text{ }}2f - 4\left( {\dfrac{{ - 1}}{4}\left( {37,10f} \right)} \right){\text{ = 3}} \\
\Rightarrow 2f + 37 + 10f = 3 \\
\Rightarrow 12f + 37 = 3 \\
\Rightarrow 12f = - 34 \\
\Rightarrow f = - \dfrac{{17}}{6} \\
$
Put the value of $f$ in equation $(C)$, we get
$g = - \dfrac{1}{4}\left( {37 + 10f} \right)$
$
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 + 10\left( { - \dfrac{{17}}{6}} \right)} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 - \dfrac{{170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{222 - 170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{52}}{6}} \right) \\
$
$ \Rightarrow {\text{ g = - }}\dfrac{{13}}{6}$
Put the value of $g$ in equation $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
\Rightarrow 4 + 4\left( { - \dfrac{{13}}{6}} \right) + c = 0 \\
\Rightarrow 4 - \dfrac{{52}}{6}{\text{ + c = 0}} \\
\Rightarrow \dfrac{{24 - 52}}{6}{\text{ + c = 0}} \\
$
$
\Rightarrow - \dfrac{{28}}{6} + c = 0 \\
\Rightarrow c = \dfrac{{14}}{3} \\
$
$\therefore $ The correct answer is option C.
Note: Whenever we face such types of questions, the key concept is that we have to write what is given to us, like we did. Then we will apply the circle equation to calculate concyclic points, after deriving all the equations and solving them, we find the value of c and thus we get our answer.
Complete step-by-step answer:
Concyclic points – A set of points are said to be concyclic, if they lie on a common circle. All concyclic points are the same distance from the centre of the circle.
By using Circle equation we get , ${x^2} + {y^2} + 2gx + 2fy + c = 0$
All the points (2,0), (0,1), (4,5), (0,c) will lie on this circle
For point A (2,0) -
${\left( 2 \right)^2} + {\left( 0 \right)^2} + 2 \times g \times 2 + c = 0$
$4 + 4g + c = 0$ ….. (1)
For point B (0,1)
${\left( 1 \right)^2} + {\text{ 2f}} \times {\text{1 + }}c{\text{ = 0}}$
$2f{\text{ + c + 1 = 0}}$ ….. (2)
For point (4,5)
$
{\left( 4 \right)^2} + {\left( 5 \right)^2} + 2g \times 4 + 2f \times 5 + c = 0 \\
41{\text{ }} + 8g{\text{ }} + 10f + c = 0{\text{ }}.....{\text{(3)}} \\
$
By solving these equations we get,
From $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
c = - 4 - 4g \\
{\text{ }} \\
$
Put the value of c in equation $(3)$
$
{\text{ }}41 + 8g + 10f - 4 - 4g = 0 \\
\Rightarrow {\text{ 37 + 4g + 10f = 0 }}....{\text{ (4)}} \\
$
Again, put the value of ‘c’ from equation $(1)$, in equation $(2)$, we get,
$
{\text{ }}1 + 2f + c = 0 \\
\Rightarrow 1 + 2f - 4 - 4g = 0 \\
\Rightarrow 2f - 4g - 3 = 0{\text{ }}.....{\text{(5) }} \\
$
From equation, $(4)$ and $(5)$, we get,
$
37 + 4g + 10f = 0 \\
\& {\text{ 2f - 4g - 3 = 0}} \\
$
$
\Rightarrow 4g + 10f = - 37{\text{ }}...{\text{(A)}} \\
\Rightarrow {\text{2}}f - 4g = 3{\text{ }}....{\text{ (B)}} \\
$
From equation $(A)$, we get
$
\Rightarrow 4g = - 37 - 10f \\
\Rightarrow g = \dfrac{{ - 37 - 10f}}{4} \\
\Rightarrow g = \dfrac{{ - 1}}{4}\left( {37 - 10f} \right){\text{ }} \to {\text{(C)}} \\
$
Put the value of $g$ from equation $(C)$ in $(B)$, we get
$
{\text{ }}2f - 4\left( {\dfrac{{ - 1}}{4}\left( {37,10f} \right)} \right){\text{ = 3}} \\
\Rightarrow 2f + 37 + 10f = 3 \\
\Rightarrow 12f + 37 = 3 \\
\Rightarrow 12f = - 34 \\
\Rightarrow f = - \dfrac{{17}}{6} \\
$
Put the value of $f$ in equation $(C)$, we get
$g = - \dfrac{1}{4}\left( {37 + 10f} \right)$
$
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 + 10\left( { - \dfrac{{17}}{6}} \right)} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 - \dfrac{{170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{222 - 170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{52}}{6}} \right) \\
$
$ \Rightarrow {\text{ g = - }}\dfrac{{13}}{6}$
Put the value of $g$ in equation $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
\Rightarrow 4 + 4\left( { - \dfrac{{13}}{6}} \right) + c = 0 \\
\Rightarrow 4 - \dfrac{{52}}{6}{\text{ + c = 0}} \\
\Rightarrow \dfrac{{24 - 52}}{6}{\text{ + c = 0}} \\
$
$
\Rightarrow - \dfrac{{28}}{6} + c = 0 \\
\Rightarrow c = \dfrac{{14}}{3} \\
$
$\therefore $ The correct answer is option C.
Note: Whenever we face such types of questions, the key concept is that we have to write what is given to us, like we did. Then we will apply the circle equation to calculate concyclic points, after deriving all the equations and solving them, we find the value of c and thus we get our answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
