
If the points $\left( {2,0} \right){\text{, }}\left( {0,1} \right),{\text{ }}\left( {4,5} \right),{\text{ }}$and $\left( {0,c} \right)$ are concyclic, then the value of c is
A. $-1$
B. $1$
C. $\dfrac{{14}}{3}$
D. $ - \dfrac{{14}}{3}$
Answer
605.4k+ views
Hint: In order to solve this equation, we have to find out the value of c by using a circle equation that passes through the point (2,0), (0,1), (4,5), (0,c).
Complete step-by-step answer:
Concyclic points – A set of points are said to be concyclic, if they lie on a common circle. All concyclic points are the same distance from the centre of the circle.
By using Circle equation we get , ${x^2} + {y^2} + 2gx + 2fy + c = 0$
All the points (2,0), (0,1), (4,5), (0,c) will lie on this circle
For point A (2,0) -
${\left( 2 \right)^2} + {\left( 0 \right)^2} + 2 \times g \times 2 + c = 0$
$4 + 4g + c = 0$ ….. (1)
For point B (0,1)
${\left( 1 \right)^2} + {\text{ 2f}} \times {\text{1 + }}c{\text{ = 0}}$
$2f{\text{ + c + 1 = 0}}$ ….. (2)
For point (4,5)
$
{\left( 4 \right)^2} + {\left( 5 \right)^2} + 2g \times 4 + 2f \times 5 + c = 0 \\
41{\text{ }} + 8g{\text{ }} + 10f + c = 0{\text{ }}.....{\text{(3)}} \\
$
By solving these equations we get,
From $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
c = - 4 - 4g \\
{\text{ }} \\
$
Put the value of c in equation $(3)$
$
{\text{ }}41 + 8g + 10f - 4 - 4g = 0 \\
\Rightarrow {\text{ 37 + 4g + 10f = 0 }}....{\text{ (4)}} \\
$
Again, put the value of ‘c’ from equation $(1)$, in equation $(2)$, we get,
$
{\text{ }}1 + 2f + c = 0 \\
\Rightarrow 1 + 2f - 4 - 4g = 0 \\
\Rightarrow 2f - 4g - 3 = 0{\text{ }}.....{\text{(5) }} \\
$
From equation, $(4)$ and $(5)$, we get,
$
37 + 4g + 10f = 0 \\
\& {\text{ 2f - 4g - 3 = 0}} \\
$
$
\Rightarrow 4g + 10f = - 37{\text{ }}...{\text{(A)}} \\
\Rightarrow {\text{2}}f - 4g = 3{\text{ }}....{\text{ (B)}} \\
$
From equation $(A)$, we get
$
\Rightarrow 4g = - 37 - 10f \\
\Rightarrow g = \dfrac{{ - 37 - 10f}}{4} \\
\Rightarrow g = \dfrac{{ - 1}}{4}\left( {37 - 10f} \right){\text{ }} \to {\text{(C)}} \\
$
Put the value of $g$ from equation $(C)$ in $(B)$, we get
$
{\text{ }}2f - 4\left( {\dfrac{{ - 1}}{4}\left( {37,10f} \right)} \right){\text{ = 3}} \\
\Rightarrow 2f + 37 + 10f = 3 \\
\Rightarrow 12f + 37 = 3 \\
\Rightarrow 12f = - 34 \\
\Rightarrow f = - \dfrac{{17}}{6} \\
$
Put the value of $f$ in equation $(C)$, we get
$g = - \dfrac{1}{4}\left( {37 + 10f} \right)$
$
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 + 10\left( { - \dfrac{{17}}{6}} \right)} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 - \dfrac{{170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{222 - 170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{52}}{6}} \right) \\
$
$ \Rightarrow {\text{ g = - }}\dfrac{{13}}{6}$
Put the value of $g$ in equation $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
\Rightarrow 4 + 4\left( { - \dfrac{{13}}{6}} \right) + c = 0 \\
\Rightarrow 4 - \dfrac{{52}}{6}{\text{ + c = 0}} \\
\Rightarrow \dfrac{{24 - 52}}{6}{\text{ + c = 0}} \\
$
$
\Rightarrow - \dfrac{{28}}{6} + c = 0 \\
\Rightarrow c = \dfrac{{14}}{3} \\
$
$\therefore $ The correct answer is option C.
Note: Whenever we face such types of questions, the key concept is that we have to write what is given to us, like we did. Then we will apply the circle equation to calculate concyclic points, after deriving all the equations and solving them, we find the value of c and thus we get our answer.
Complete step-by-step answer:
Concyclic points – A set of points are said to be concyclic, if they lie on a common circle. All concyclic points are the same distance from the centre of the circle.
By using Circle equation we get , ${x^2} + {y^2} + 2gx + 2fy + c = 0$
All the points (2,0), (0,1), (4,5), (0,c) will lie on this circle
For point A (2,0) -
${\left( 2 \right)^2} + {\left( 0 \right)^2} + 2 \times g \times 2 + c = 0$
$4 + 4g + c = 0$ ….. (1)
For point B (0,1)
${\left( 1 \right)^2} + {\text{ 2f}} \times {\text{1 + }}c{\text{ = 0}}$
$2f{\text{ + c + 1 = 0}}$ ….. (2)
For point (4,5)
$
{\left( 4 \right)^2} + {\left( 5 \right)^2} + 2g \times 4 + 2f \times 5 + c = 0 \\
41{\text{ }} + 8g{\text{ }} + 10f + c = 0{\text{ }}.....{\text{(3)}} \\
$
By solving these equations we get,
From $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
c = - 4 - 4g \\
{\text{ }} \\
$
Put the value of c in equation $(3)$
$
{\text{ }}41 + 8g + 10f - 4 - 4g = 0 \\
\Rightarrow {\text{ 37 + 4g + 10f = 0 }}....{\text{ (4)}} \\
$
Again, put the value of ‘c’ from equation $(1)$, in equation $(2)$, we get,
$
{\text{ }}1 + 2f + c = 0 \\
\Rightarrow 1 + 2f - 4 - 4g = 0 \\
\Rightarrow 2f - 4g - 3 = 0{\text{ }}.....{\text{(5) }} \\
$
From equation, $(4)$ and $(5)$, we get,
$
37 + 4g + 10f = 0 \\
\& {\text{ 2f - 4g - 3 = 0}} \\
$
$
\Rightarrow 4g + 10f = - 37{\text{ }}...{\text{(A)}} \\
\Rightarrow {\text{2}}f - 4g = 3{\text{ }}....{\text{ (B)}} \\
$
From equation $(A)$, we get
$
\Rightarrow 4g = - 37 - 10f \\
\Rightarrow g = \dfrac{{ - 37 - 10f}}{4} \\
\Rightarrow g = \dfrac{{ - 1}}{4}\left( {37 - 10f} \right){\text{ }} \to {\text{(C)}} \\
$
Put the value of $g$ from equation $(C)$ in $(B)$, we get
$
{\text{ }}2f - 4\left( {\dfrac{{ - 1}}{4}\left( {37,10f} \right)} \right){\text{ = 3}} \\
\Rightarrow 2f + 37 + 10f = 3 \\
\Rightarrow 12f + 37 = 3 \\
\Rightarrow 12f = - 34 \\
\Rightarrow f = - \dfrac{{17}}{6} \\
$
Put the value of $f$ in equation $(C)$, we get
$g = - \dfrac{1}{4}\left( {37 + 10f} \right)$
$
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 + 10\left( { - \dfrac{{17}}{6}} \right)} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 - \dfrac{{170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{222 - 170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{52}}{6}} \right) \\
$
$ \Rightarrow {\text{ g = - }}\dfrac{{13}}{6}$
Put the value of $g$ in equation $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
\Rightarrow 4 + 4\left( { - \dfrac{{13}}{6}} \right) + c = 0 \\
\Rightarrow 4 - \dfrac{{52}}{6}{\text{ + c = 0}} \\
\Rightarrow \dfrac{{24 - 52}}{6}{\text{ + c = 0}} \\
$
$
\Rightarrow - \dfrac{{28}}{6} + c = 0 \\
\Rightarrow c = \dfrac{{14}}{3} \\
$
$\therefore $ The correct answer is option C.
Note: Whenever we face such types of questions, the key concept is that we have to write what is given to us, like we did. Then we will apply the circle equation to calculate concyclic points, after deriving all the equations and solving them, we find the value of c and thus we get our answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

