If the points $\left( {2,0} \right){\text{, }}\left( {0,1} \right),{\text{ }}\left( {4,5} \right),{\text{ }}$and $\left( {0,c} \right)$ are concyclic, then the value of c is
A. $-1$
B. $1$
C. $\dfrac{{14}}{3}$
D. $ - \dfrac{{14}}{3}$
Last updated date: 19th Mar 2023
•
Total views: 303.6k
•
Views today: 8.86k
Answer
303.6k+ views
Hint: In order to solve this equation, we have to find out the value of c by using a circle equation that passes through the point (2,0), (0,1), (4,5), (0,c).
Complete step-by-step answer:
Concyclic points – A set of points are said to be concyclic, if they lie on a common circle. All concyclic points are the same distance from the centre of the circle.
By using Circle equation we get , ${x^2} + {y^2} + 2gx + 2fy + c = 0$
All the points (2,0), (0,1), (4,5), (0,c) will lie on this circle
For point A (2,0) -
${\left( 2 \right)^2} + {\left( 0 \right)^2} + 2 \times g \times 2 + c = 0$
$4 + 4g + c = 0$ ….. (1)
For point B (0,1)
${\left( 1 \right)^2} + {\text{ 2f}} \times {\text{1 + }}c{\text{ = 0}}$
$2f{\text{ + c + 1 = 0}}$ ….. (2)
For point (4,5)
$
{\left( 4 \right)^2} + {\left( 5 \right)^2} + 2g \times 4 + 2f \times 5 + c = 0 \\
41{\text{ }} + 8g{\text{ }} + 10f + c = 0{\text{ }}.....{\text{(3)}} \\
$
By solving these equations we get,
From $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
c = - 4 - 4g \\
{\text{ }} \\
$
Put the value of c in equation $(3)$
$
{\text{ }}41 + 8g + 10f - 4 - 4g = 0 \\
\Rightarrow {\text{ 37 + 4g + 10f = 0 }}....{\text{ (4)}} \\
$
Again, put the value of ‘c’ from equation $(1)$, in equation $(2)$, we get,
$
{\text{ }}1 + 2f + c = 0 \\
\Rightarrow 1 + 2f - 4 - 4g = 0 \\
\Rightarrow 2f - 4g - 3 = 0{\text{ }}.....{\text{(5) }} \\
$
From equation, $(4)$ and $(5)$, we get,
$
37 + 4g + 10f = 0 \\
\& {\text{ 2f - 4g - 3 = 0}} \\
$
$
\Rightarrow 4g + 10f = - 37{\text{ }}...{\text{(A)}} \\
\Rightarrow {\text{2}}f - 4g = 3{\text{ }}....{\text{ (B)}} \\
$
From equation $(A)$, we get
$
\Rightarrow 4g = - 37 - 10f \\
\Rightarrow g = \dfrac{{ - 37 - 10f}}{4} \\
\Rightarrow g = \dfrac{{ - 1}}{4}\left( {37 - 10f} \right){\text{ }} \to {\text{(C)}} \\
$
Put the value of $g$ from equation $(C)$ in $(B)$, we get
$
{\text{ }}2f - 4\left( {\dfrac{{ - 1}}{4}\left( {37,10f} \right)} \right){\text{ = 3}} \\
\Rightarrow 2f + 37 + 10f = 3 \\
\Rightarrow 12f + 37 = 3 \\
\Rightarrow 12f = - 34 \\
\Rightarrow f = - \dfrac{{17}}{6} \\
$
Put the value of $f$ in equation $(C)$, we get
$g = - \dfrac{1}{4}\left( {37 + 10f} \right)$
$
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 + 10\left( { - \dfrac{{17}}{6}} \right)} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 - \dfrac{{170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{222 - 170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{52}}{6}} \right) \\
$
$ \Rightarrow {\text{ g = - }}\dfrac{{13}}{6}$
Put the value of $g$ in equation $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
\Rightarrow 4 + 4\left( { - \dfrac{{13}}{6}} \right) + c = 0 \\
\Rightarrow 4 - \dfrac{{52}}{6}{\text{ + c = 0}} \\
\Rightarrow \dfrac{{24 - 52}}{6}{\text{ + c = 0}} \\
$
$
\Rightarrow - \dfrac{{28}}{6} + c = 0 \\
\Rightarrow c = \dfrac{{14}}{3} \\
$
$\therefore $ The correct answer is option C.
Note: Whenever we face such types of questions, the key concept is that we have to write what is given to us, like we did. Then we will apply the circle equation to calculate concyclic points, after deriving all the equations and solving them, we find the value of c and thus we get our answer.
Complete step-by-step answer:
Concyclic points – A set of points are said to be concyclic, if they lie on a common circle. All concyclic points are the same distance from the centre of the circle.
By using Circle equation we get , ${x^2} + {y^2} + 2gx + 2fy + c = 0$
All the points (2,0), (0,1), (4,5), (0,c) will lie on this circle
For point A (2,0) -
${\left( 2 \right)^2} + {\left( 0 \right)^2} + 2 \times g \times 2 + c = 0$
$4 + 4g + c = 0$ ….. (1)
For point B (0,1)
${\left( 1 \right)^2} + {\text{ 2f}} \times {\text{1 + }}c{\text{ = 0}}$
$2f{\text{ + c + 1 = 0}}$ ….. (2)
For point (4,5)
$
{\left( 4 \right)^2} + {\left( 5 \right)^2} + 2g \times 4 + 2f \times 5 + c = 0 \\
41{\text{ }} + 8g{\text{ }} + 10f + c = 0{\text{ }}.....{\text{(3)}} \\
$
By solving these equations we get,
From $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
c = - 4 - 4g \\
{\text{ }} \\
$
Put the value of c in equation $(3)$
$
{\text{ }}41 + 8g + 10f - 4 - 4g = 0 \\
\Rightarrow {\text{ 37 + 4g + 10f = 0 }}....{\text{ (4)}} \\
$
Again, put the value of ‘c’ from equation $(1)$, in equation $(2)$, we get,
$
{\text{ }}1 + 2f + c = 0 \\
\Rightarrow 1 + 2f - 4 - 4g = 0 \\
\Rightarrow 2f - 4g - 3 = 0{\text{ }}.....{\text{(5) }} \\
$
From equation, $(4)$ and $(5)$, we get,
$
37 + 4g + 10f = 0 \\
\& {\text{ 2f - 4g - 3 = 0}} \\
$
$
\Rightarrow 4g + 10f = - 37{\text{ }}...{\text{(A)}} \\
\Rightarrow {\text{2}}f - 4g = 3{\text{ }}....{\text{ (B)}} \\
$
From equation $(A)$, we get
$
\Rightarrow 4g = - 37 - 10f \\
\Rightarrow g = \dfrac{{ - 37 - 10f}}{4} \\
\Rightarrow g = \dfrac{{ - 1}}{4}\left( {37 - 10f} \right){\text{ }} \to {\text{(C)}} \\
$
Put the value of $g$ from equation $(C)$ in $(B)$, we get
$
{\text{ }}2f - 4\left( {\dfrac{{ - 1}}{4}\left( {37,10f} \right)} \right){\text{ = 3}} \\
\Rightarrow 2f + 37 + 10f = 3 \\
\Rightarrow 12f + 37 = 3 \\
\Rightarrow 12f = - 34 \\
\Rightarrow f = - \dfrac{{17}}{6} \\
$
Put the value of $f$ in equation $(C)$, we get
$g = - \dfrac{1}{4}\left( {37 + 10f} \right)$
$
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 + 10\left( { - \dfrac{{17}}{6}} \right)} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {37 - \dfrac{{170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{222 - 170}}{6}} \right) \\
\Rightarrow {\text{ g = - }}\dfrac{1}{4}\left( {\dfrac{{52}}{6}} \right) \\
$
$ \Rightarrow {\text{ g = - }}\dfrac{{13}}{6}$
Put the value of $g$ in equation $(1)$
$
{\text{ }}4 + 4g + c = 0 \\
\Rightarrow 4 + 4\left( { - \dfrac{{13}}{6}} \right) + c = 0 \\
\Rightarrow 4 - \dfrac{{52}}{6}{\text{ + c = 0}} \\
\Rightarrow \dfrac{{24 - 52}}{6}{\text{ + c = 0}} \\
$
$
\Rightarrow - \dfrac{{28}}{6} + c = 0 \\
\Rightarrow c = \dfrac{{14}}{3} \\
$
$\therefore $ The correct answer is option C.
Note: Whenever we face such types of questions, the key concept is that we have to write what is given to us, like we did. Then we will apply the circle equation to calculate concyclic points, after deriving all the equations and solving them, we find the value of c and thus we get our answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
