Answer
Verified
463.8k+ views
Hint: o solve this question we will first of all determine the equation of normal of given parabola. The equation of normal of parabola of type, \[{{y}^{2}}=4ax\] ar point \[\left( {{x}_{1}},{{y}_{1}} \right)\] is given by,
\[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\dfrac{dy}{dx}}\left( x-{{x}_{1}} \right)\]
Complete step-by-step answer:
Given parabola is, \[{{y}^{2}}=4bx\] this parabola and normal would be of the form.
We have equation of normal of parabola, \[{{y}^{2}}=4ax\] is, \[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\left( x-{{x}_{1}} \right)\] at point \[\left( {{x}_{1}},{{y}_{1}} \right)\] - (1)
Given that equation of parabola is, \[{{y}^{2}}=4bx\].
Differentiating both sides with respect to x we get,
\[\begin{align}
& 2y\dfrac{dy}{dx}=4b \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{4b}{2y} \\
\end{align}\]
Then, \[\dfrac{dy}{dx}=\dfrac{2b}{y}\] - (2)
We are given that the normal is at the point \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\].
Substituting value of \[y=2b{{t}_{1}}\] in equation (2) we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1\left( 2b \right)}{2b{{t}_{1}}}=\dfrac{1}{{{t}_{1}}}\]
Also the slope of normal is \[\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\].
\[\Rightarrow \] Slope of normal = \[\dfrac{-1}{\left( \dfrac{1}{{{t}_{1}}} \right)}=-{{t}_{1}}\].
Therefore, equation of normal ar \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\] is,
\[\Rightarrow \left( y-2b{{t}_{1}} \right)=-{{t}_{1}}\left( x-bt_{1}^{2} \right)\] - (3)
Now the point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] also lies on the normal. Therefore, point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] satisfies (3) we get,
\[\Rightarrow \left( 2b{{t}_{2}}-2b{{t}_{1}} \right)=-{{t}_{1}}\left( bt_{2}^{2}-bt_{1}^{2} \right)\]
Taking 2b common on left we get, and also taking b common on right;
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( t_{2}^{2}-t_{1}^{2} \right)\]
Now applying identity \[\left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{2}}+{{a}_{1}} \right)=a_{2}^{2}-a_{1}^{2}\] on the RHS of above equation we get,
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)\]
Now cancelling \[b\left( {{t}_{2}}-{{t}_{1}} \right)\] on both sides we get,
This can be done as \[b\ne 0\] & \[{{t}_{2}}-{{t}_{1}}\ne 0\].
\[\begin{align}
& \Rightarrow 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right) \\
& \Rightarrow -{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)=2 \\
& \Rightarrow -{{t}_{2}}{{t}_{1}}=2+t_{1}^{2} \\
\end{align}\]
Dividing by \[{{t}_{1}}\] we get,
\[\Rightarrow -{{t}_{2}}=\dfrac{2+t_{1}^{2}}{{{t}_{1}}}\]
Multiplying ‘minus’ both sides we get,
\[\Rightarrow {{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\]
\[\Rightarrow {{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\], which is option (b).
So, the correct answer is “Option B”.
Note: The possibility of error in this question can be at a point where students directly substitute value of point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] in equation of parabola. This would be wrong because this point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] is a point of contact normal of parabola. So, we first need to determine the parabola normal of parabola then we can proceed accordingly.
\[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\dfrac{dy}{dx}}\left( x-{{x}_{1}} \right)\]
Complete step-by-step answer:
Given parabola is, \[{{y}^{2}}=4bx\] this parabola and normal would be of the form.
We have equation of normal of parabola, \[{{y}^{2}}=4ax\] is, \[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\left( x-{{x}_{1}} \right)\] at point \[\left( {{x}_{1}},{{y}_{1}} \right)\] - (1)
Given that equation of parabola is, \[{{y}^{2}}=4bx\].
Differentiating both sides with respect to x we get,
\[\begin{align}
& 2y\dfrac{dy}{dx}=4b \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{4b}{2y} \\
\end{align}\]
Then, \[\dfrac{dy}{dx}=\dfrac{2b}{y}\] - (2)
We are given that the normal is at the point \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\].
Substituting value of \[y=2b{{t}_{1}}\] in equation (2) we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1\left( 2b \right)}{2b{{t}_{1}}}=\dfrac{1}{{{t}_{1}}}\]
Also the slope of normal is \[\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\].
\[\Rightarrow \] Slope of normal = \[\dfrac{-1}{\left( \dfrac{1}{{{t}_{1}}} \right)}=-{{t}_{1}}\].
Therefore, equation of normal ar \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\] is,
\[\Rightarrow \left( y-2b{{t}_{1}} \right)=-{{t}_{1}}\left( x-bt_{1}^{2} \right)\] - (3)
Now the point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] also lies on the normal. Therefore, point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] satisfies (3) we get,
\[\Rightarrow \left( 2b{{t}_{2}}-2b{{t}_{1}} \right)=-{{t}_{1}}\left( bt_{2}^{2}-bt_{1}^{2} \right)\]
Taking 2b common on left we get, and also taking b common on right;
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( t_{2}^{2}-t_{1}^{2} \right)\]
Now applying identity \[\left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{2}}+{{a}_{1}} \right)=a_{2}^{2}-a_{1}^{2}\] on the RHS of above equation we get,
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)\]
Now cancelling \[b\left( {{t}_{2}}-{{t}_{1}} \right)\] on both sides we get,
This can be done as \[b\ne 0\] & \[{{t}_{2}}-{{t}_{1}}\ne 0\].
\[\begin{align}
& \Rightarrow 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right) \\
& \Rightarrow -{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)=2 \\
& \Rightarrow -{{t}_{2}}{{t}_{1}}=2+t_{1}^{2} \\
\end{align}\]
Dividing by \[{{t}_{1}}\] we get,
\[\Rightarrow -{{t}_{2}}=\dfrac{2+t_{1}^{2}}{{{t}_{1}}}\]
Multiplying ‘minus’ both sides we get,
\[\Rightarrow {{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\]
\[\Rightarrow {{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\], which is option (b).
So, the correct answer is “Option B”.
Note: The possibility of error in this question can be at a point where students directly substitute value of point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] in equation of parabola. This would be wrong because this point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] is a point of contact normal of parabola. So, we first need to determine the parabola normal of parabola then we can proceed accordingly.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE