If the normal at the point \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\] on a parabola, \[{{y}^{2}}=4bx\] meets the curve again at point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] then,
(a) \[{{t}_{2}}={{t}_{1}}+\dfrac{2}{{{t}_{1}}}\]
(b) \[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]
(c) \[{{t}_{2}}=-{{t}_{1}}+\dfrac{2}{{{t}_{1}}}\]
(d) \[{{t}_{2}}={{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]
Answer
335.1k+ views
Hint: o solve this question we will first of all determine the equation of normal of given parabola. The equation of normal of parabola of type, \[{{y}^{2}}=4ax\] ar point \[\left( {{x}_{1}},{{y}_{1}} \right)\] is given by,
\[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\dfrac{dy}{dx}}\left( x-{{x}_{1}} \right)\]
Complete step-by-step answer:
Given parabola is, \[{{y}^{2}}=4bx\] this parabola and normal would be of the form.
We have equation of normal of parabola, \[{{y}^{2}}=4ax\] is, \[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\left( x-{{x}_{1}} \right)\] at point \[\left( {{x}_{1}},{{y}_{1}} \right)\] - (1)
Given that equation of parabola is, \[{{y}^{2}}=4bx\].
Differentiating both sides with respect to x we get,
\[\begin{align}
& 2y\dfrac{dy}{dx}=4b \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{4b}{2y} \\
\end{align}\]
Then, \[\dfrac{dy}{dx}=\dfrac{2b}{y}\] - (2)
We are given that the normal is at the point \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\].
Substituting value of \[y=2b{{t}_{1}}\] in equation (2) we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1\left( 2b \right)}{2b{{t}_{1}}}=\dfrac{1}{{{t}_{1}}}\]
Also the slope of normal is \[\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\].
\[\Rightarrow \] Slope of normal = \[\dfrac{-1}{\left( \dfrac{1}{{{t}_{1}}} \right)}=-{{t}_{1}}\].
Therefore, equation of normal ar \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\] is,
\[\Rightarrow \left( y-2b{{t}_{1}} \right)=-{{t}_{1}}\left( x-bt_{1}^{2} \right)\] - (3)
Now the point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] also lies on the normal. Therefore, point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] satisfies (3) we get,
\[\Rightarrow \left( 2b{{t}_{2}}-2b{{t}_{1}} \right)=-{{t}_{1}}\left( bt_{2}^{2}-bt_{1}^{2} \right)\]
Taking 2b common on left we get, and also taking b common on right;
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( t_{2}^{2}-t_{1}^{2} \right)\]
Now applying identity \[\left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{2}}+{{a}_{1}} \right)=a_{2}^{2}-a_{1}^{2}\] on the RHS of above equation we get,
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)\]
Now cancelling \[b\left( {{t}_{2}}-{{t}_{1}} \right)\] on both sides we get,
This can be done as \[b\ne 0\] & \[{{t}_{2}}-{{t}_{1}}\ne 0\].
\[\begin{align}
& \Rightarrow 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right) \\
& \Rightarrow -{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)=2 \\
& \Rightarrow -{{t}_{2}}{{t}_{1}}=2+t_{1}^{2} \\
\end{align}\]
Dividing by \[{{t}_{1}}\] we get,
\[\Rightarrow -{{t}_{2}}=\dfrac{2+t_{1}^{2}}{{{t}_{1}}}\]
Multiplying ‘minus’ both sides we get,
\[\Rightarrow {{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\]
\[\Rightarrow {{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\], which is option (b).
So, the correct answer is “Option B”.
Note: The possibility of error in this question can be at a point where students directly substitute value of point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] in equation of parabola. This would be wrong because this point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] is a point of contact normal of parabola. So, we first need to determine the parabola normal of parabola then we can proceed accordingly.
\[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\dfrac{dy}{dx}}\left( x-{{x}_{1}} \right)\]
Complete step-by-step answer:
Given parabola is, \[{{y}^{2}}=4bx\] this parabola and normal would be of the form.

We have equation of normal of parabola, \[{{y}^{2}}=4ax\] is, \[\left( y-{{y}_{1}} \right)=\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\left( x-{{x}_{1}} \right)\] at point \[\left( {{x}_{1}},{{y}_{1}} \right)\] - (1)
Given that equation of parabola is, \[{{y}^{2}}=4bx\].
Differentiating both sides with respect to x we get,
\[\begin{align}
& 2y\dfrac{dy}{dx}=4b \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{4b}{2y} \\
\end{align}\]
Then, \[\dfrac{dy}{dx}=\dfrac{2b}{y}\] - (2)
We are given that the normal is at the point \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\].
Substituting value of \[y=2b{{t}_{1}}\] in equation (2) we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1\left( 2b \right)}{2b{{t}_{1}}}=\dfrac{1}{{{t}_{1}}}\]
Also the slope of normal is \[\dfrac{-1}{\left( \dfrac{dy}{dx} \right)}\].
\[\Rightarrow \] Slope of normal = \[\dfrac{-1}{\left( \dfrac{1}{{{t}_{1}}} \right)}=-{{t}_{1}}\].
Therefore, equation of normal ar \[\left( bt_{1}^{2},2b{{t}_{1}} \right)\] is,
\[\Rightarrow \left( y-2b{{t}_{1}} \right)=-{{t}_{1}}\left( x-bt_{1}^{2} \right)\] - (3)
Now the point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] also lies on the normal. Therefore, point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] satisfies (3) we get,
\[\Rightarrow \left( 2b{{t}_{2}}-2b{{t}_{1}} \right)=-{{t}_{1}}\left( bt_{2}^{2}-bt_{1}^{2} \right)\]
Taking 2b common on left we get, and also taking b common on right;
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( t_{2}^{2}-t_{1}^{2} \right)\]
Now applying identity \[\left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{2}}+{{a}_{1}} \right)=a_{2}^{2}-a_{1}^{2}\] on the RHS of above equation we get,
\[\Rightarrow 2b\left( {{t}_{2}}-{{t}_{1}} \right)=-{{t}_{1}}b\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)\]
Now cancelling \[b\left( {{t}_{2}}-{{t}_{1}} \right)\] on both sides we get,
This can be done as \[b\ne 0\] & \[{{t}_{2}}-{{t}_{1}}\ne 0\].
\[\begin{align}
& \Rightarrow 2=-{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right) \\
& \Rightarrow -{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)=2 \\
& \Rightarrow -{{t}_{2}}{{t}_{1}}=2+t_{1}^{2} \\
\end{align}\]
Dividing by \[{{t}_{1}}\] we get,
\[\Rightarrow -{{t}_{2}}=\dfrac{2+t_{1}^{2}}{{{t}_{1}}}\]
Multiplying ‘minus’ both sides we get,
\[\Rightarrow {{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\]
\[\Rightarrow {{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\], which is option (b).
So, the correct answer is “Option B”.
Note: The possibility of error in this question can be at a point where students directly substitute value of point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] in equation of parabola. This would be wrong because this point \[\left( bt_{2}^{2},2b{{t}_{2}} \right)\] is a point of contact normal of parabola. So, we first need to determine the parabola normal of parabola then we can proceed accordingly.
Last updated date: 26th Sep 2023
•
Total views: 335.1k
•
Views today: 4.35k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
