Answer
Verified
431.4k+ views
Hint: The wavelength of the particle will be the ratio of the Planck’s constant to the square root of the product of twice the mass and the kinetic energy. Using this relationship, find the wavelength in the first case and then find the wavelength if the energy increases. Find out the percentage variation using this. These details will help you in solving this question.
Complete step by step solution:
The de Broglie wavelength is given by the equation,
$\lambda =\dfrac{h}{p}$
Where $h$ be the Planck’s constant and $p$ be the momentum of the particle.
The momentum can be written as,$p=\sqrt{2mE}$
Substituting this in the equation will give,
$\lambda =\dfrac{h}{\sqrt{2mE}}$
Where $m$ be the mass of the particle, $E$ be the kinetic energy of the particle.
The kinetic energy given in the first case is $E$ itself. Therefore the equation will be,
$\lambda =\dfrac{h}{\sqrt{2mE}}$
Squaring this will give,
${{\lambda }^{2}}=\dfrac{{{h}^{2}}}{2mE}$
Now let us look at the second case in the question. In this case the kinetic energy has been increased by $16$ times its previous value. That is,
$E=16E$
Therefore, the wavelength of the particle can be written by the equation,
${{{\lambda }'}^{2}}=\dfrac{{{h}^{2}}}{2m\left( 16E \right)}$
From this we can see that, the square of the wavelength has become ${{\dfrac{1}{16}}^{th}}$ of the square of the wavelength of the previous case. That is,
${{{\lambda }'}^{2}}=\dfrac{{{\lambda }^{2}}}{16}$
Taking the square root will give,
${\lambda }'=\dfrac{\lambda }{4}$
The change in the wavelength can be written as,
$\begin{align}
& \Delta \lambda =\lambda -{\lambda }' \\
& \Rightarrow \Delta \lambda =\lambda -\dfrac{\lambda }{4} \\
& \Rightarrow \Delta \lambda =\dfrac{3\lambda }{4} \\
\end{align}$
The percentage change in the wavelength can be written as,
$\text{percentage change=}\dfrac{\text{change in }\lambda }{\text{original }\lambda }$
That is,
$\text{percentage change}=\dfrac{\Delta \lambda }{\lambda }\times 100$
Substituting the values will give,
$\text{percentage change}=\dfrac{3}{4}\times 100=75%$
The correct answer is given as option B.
Note:
Kinetic energy is the energy acquired by the body because of its motion. This is a scalar quantity also. De Broglie wavelength is a wavelength which determines the probability density of calculating the position of the object at a specific point of the configuration space.
Complete step by step solution:
The de Broglie wavelength is given by the equation,
$\lambda =\dfrac{h}{p}$
Where $h$ be the Planck’s constant and $p$ be the momentum of the particle.
The momentum can be written as,$p=\sqrt{2mE}$
Substituting this in the equation will give,
$\lambda =\dfrac{h}{\sqrt{2mE}}$
Where $m$ be the mass of the particle, $E$ be the kinetic energy of the particle.
The kinetic energy given in the first case is $E$ itself. Therefore the equation will be,
$\lambda =\dfrac{h}{\sqrt{2mE}}$
Squaring this will give,
${{\lambda }^{2}}=\dfrac{{{h}^{2}}}{2mE}$
Now let us look at the second case in the question. In this case the kinetic energy has been increased by $16$ times its previous value. That is,
$E=16E$
Therefore, the wavelength of the particle can be written by the equation,
${{{\lambda }'}^{2}}=\dfrac{{{h}^{2}}}{2m\left( 16E \right)}$
From this we can see that, the square of the wavelength has become ${{\dfrac{1}{16}}^{th}}$ of the square of the wavelength of the previous case. That is,
${{{\lambda }'}^{2}}=\dfrac{{{\lambda }^{2}}}{16}$
Taking the square root will give,
${\lambda }'=\dfrac{\lambda }{4}$
The change in the wavelength can be written as,
$\begin{align}
& \Delta \lambda =\lambda -{\lambda }' \\
& \Rightarrow \Delta \lambda =\lambda -\dfrac{\lambda }{4} \\
& \Rightarrow \Delta \lambda =\dfrac{3\lambda }{4} \\
\end{align}$
The percentage change in the wavelength can be written as,
$\text{percentage change=}\dfrac{\text{change in }\lambda }{\text{original }\lambda }$
That is,
$\text{percentage change}=\dfrac{\Delta \lambda }{\lambda }\times 100$
Substituting the values will give,
$\text{percentage change}=\dfrac{3}{4}\times 100=75%$
The correct answer is given as option B.
Note:
Kinetic energy is the energy acquired by the body because of its motion. This is a scalar quantity also. De Broglie wavelength is a wavelength which determines the probability density of calculating the position of the object at a specific point of the configuration space.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE