
If the ionization energy of hydrogen atom is $13.6$ eV, the energy required to excite it from ground state to the next higher state is approximately:
A) $3.4$ eV
B) $10.2$ eV
C) $17.2$ eV
D) $13.6$ eV
Answer
541.2k+ views
Hint:We know that ground state is the lowest energy state that an atom can have. This is the energy state that is considered normal for an atom. On the other hand, the excited state is that state where an atom is at a higher energy level than the ground state. When the atoms or electrons absorb energy, they jump to the higher orbital and become excited.
Complete step-by-step answer:We know that for ionization process transition is from ${n_i} = 1$ to ${n_f} = \infty ,$
Also, ionization energy $ = 13.6$ eV which is already given in the question.
So, the Transition energy for ionization process will be:
$\Delta E = {E_\infty } - {E_1} = IE$
as we know that ${E_\infty } = 0$
thus ${E_1} = - 13.6eV$
Since the first excited state is $n = 2$
therefore, by applying ${E_n} = \dfrac{{{E_1}}}{{{n^2}}}$ as a formula we will calculate the value of ${E_2}$
so, let’s calculate the value of ${E_2}$
${E_2} = \dfrac{{ - 13.6}}{{{2^2}}}$
${E_2} = - 3.4eV$
Transition energy from ground state i.e., $n = 2$ in Hydrogen atom is given as:
$\Delta E = {E_2} - {E_1}$
$\Delta E = - 3.4 - ( - 13.6)$
$\Delta E = 10.2eV$
Therefore, If the ionization energy of hydrogen atom is $13.6$ eV, the energy required to excite it from ground state to the next higher state will be equal to $10.2$ eV.
Hence the correct answer is Option B).
Note:Ionization energy is the energy required to remove the lowest orbiting electron from the influence of the central protons. while moving across the period (left to right) the ionization energy increases and it decreases on moving down a group (top to bottom).
Complete step-by-step answer:We know that for ionization process transition is from ${n_i} = 1$ to ${n_f} = \infty ,$
Also, ionization energy $ = 13.6$ eV which is already given in the question.
So, the Transition energy for ionization process will be:
$\Delta E = {E_\infty } - {E_1} = IE$
as we know that ${E_\infty } = 0$
thus ${E_1} = - 13.6eV$
Since the first excited state is $n = 2$
therefore, by applying ${E_n} = \dfrac{{{E_1}}}{{{n^2}}}$ as a formula we will calculate the value of ${E_2}$
so, let’s calculate the value of ${E_2}$
${E_2} = \dfrac{{ - 13.6}}{{{2^2}}}$
${E_2} = - 3.4eV$
Transition energy from ground state i.e., $n = 2$ in Hydrogen atom is given as:
$\Delta E = {E_2} - {E_1}$
$\Delta E = - 3.4 - ( - 13.6)$
$\Delta E = 10.2eV$
Therefore, If the ionization energy of hydrogen atom is $13.6$ eV, the energy required to excite it from ground state to the next higher state will be equal to $10.2$ eV.
Hence the correct answer is Option B).
Note:Ionization energy is the energy required to remove the lowest orbiting electron from the influence of the central protons. while moving across the period (left to right) the ionization energy increases and it decreases on moving down a group (top to bottom).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

