If the given matrix $A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
2&1&{ - 1} \\
3&0&1
\end{array}} \right]$, then rank(A) is equal to
$
\left( a \right)4 \\
\left( b \right)1 \\
\left( c \right)2 \\
\left( d \right)3 \\
$
Answer
359.7k+ views
Hint: In this question, the rank of the matrix is equal to the number of non-zero rows in the matrix after reducing it to the echelon form. In echelon form we only apply row operation.
Complete step-by-step answer:
Given, $A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
2&1&{ - 1} \\
3&0&1
\end{array}} \right]$
Now, we have to convert the above matrix into echelon form. Echelon forms the same upper triangular matrix. In echelon form we only apply row operation.
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
2&1&{ - 1} \\
3&0&1
\end{array}} \right]$
Apply row operation, ${R_2} \to {R_2} - 2{R_1}$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
3&0&1
\end{array}} \right]$
Now apply row operation, ${R_3} \to {R_3} - 3{R_1}$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
0&{ - 9}&{ - 2}
\end{array}} \right]$
Again, apply row operation, ${R_3} \to {R_3} - \dfrac{{9{R_2}}}{5}$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
0&0&{\dfrac{{17}}{5}}
\end{array}} \right]$
We can see the above matrix is an upper triangular matrix. Now it is converted into echelon form so the rank of the matrix is equal to the number of non-zero rows.
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
0&0&{\dfrac{{17}}{5}}
\end{array}} \right]$
In this matrix there are no non zero rows so the rank of this matrix is 3.
Hence, Rank(A)=3
So, the correct option is (d).
Note: Whenever we face such types of problems we use some important points. First we convert matrix into echelon form by using some row operations then observe how many non- zero rows in echelon form matrix and we know the number of non-zero rows in echelon form is equal to rank of matrix.
Complete step-by-step answer:
Given, $A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
2&1&{ - 1} \\
3&0&1
\end{array}} \right]$
Now, we have to convert the above matrix into echelon form. Echelon forms the same upper triangular matrix. In echelon form we only apply row operation.
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
2&1&{ - 1} \\
3&0&1
\end{array}} \right]$
Apply row operation, ${R_2} \to {R_2} - 2{R_1}$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
3&0&1
\end{array}} \right]$
Now apply row operation, ${R_3} \to {R_3} - 3{R_1}$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
0&{ - 9}&{ - 2}
\end{array}} \right]$
Again, apply row operation, ${R_3} \to {R_3} - \dfrac{{9{R_2}}}{5}$
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
0&0&{\dfrac{{17}}{5}}
\end{array}} \right]$
We can see the above matrix is an upper triangular matrix. Now it is converted into echelon form so the rank of the matrix is equal to the number of non-zero rows.
$A = \left[ {\begin{array}{*{20}{c}}
1&3&1 \\
0&{ - 5}&{ - 3} \\
0&0&{\dfrac{{17}}{5}}
\end{array}} \right]$
In this matrix there are no non zero rows so the rank of this matrix is 3.
Hence, Rank(A)=3
So, the correct option is (d).
Note: Whenever we face such types of problems we use some important points. First we convert matrix into echelon form by using some row operations then observe how many non- zero rows in echelon form matrix and we know the number of non-zero rows in echelon form is equal to rank of matrix.
Last updated date: 21st Sep 2023
•
Total views: 359.7k
•
Views today: 7.59k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG
