If the given expression \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\], then \[\dfrac{dy}{dx}.\dfrac{dx}{dy}\] is equal to
(a) $1$
(b) $xy$
(c) Does not exist
(d) \[\dfrac{x+y}{xy}\]
Last updated date: 15th Mar 2023
•
Total views: 304.8k
•
Views today: 3.84k
Answer
304.8k+ views
Hint: First find derivative with respect to $'x'$ and then derivative with respect to $'y'$ . Multiply both to get the result.
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
