Answer
Verified
491.7k+ views
Hint: First find derivative with respect to $'x'$ and then derivative with respect to $'y'$ . Multiply both to get the result.
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE