
If the given expression \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\], then \[\dfrac{dy}{dx}.\dfrac{dx}{dy}\] is equal to
(a) $1$
(b) $xy$
(c) Does not exist
(d) \[\dfrac{x+y}{xy}\]
Answer
621.6k+ views
Hint: First find derivative with respect to $'x'$ and then derivative with respect to $'y'$ . Multiply both to get the result.
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Complete step-by-step answer:
The given expression is \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
First, we shall find \[\dfrac{dy}{dx}\].
According to the quotient rule,
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
By applying this rule to given function, we get
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \right]\]
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})\dfrac{d}{dx}(1-{{x}^{4}})-(1-{{x}^{4}})\dfrac{d}{dx}(1+{{x}^{4}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(0-4{{x}^{3}})-(1-{{x}^{4}})(0+4{{x}^{3}})}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{(1+{{x}^{4}})(-4{{x}^{3}})-(1-{{x}^{4}})4{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
By taking ‘\[-4{{x}^{3}}\] ’ common in the numerator, we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{-4x{}^{3}[(1+{{x}^{4}})+(1-{{x}^{4}})]}{{{(1+{{x}^{4}})}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{-4{{x}^{3}}(2)}{{{(1+{{x}^{4}})}^{2}}} \\
\end{align}\]
\[\dfrac{dy}{dx}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}..........(i)\]
Now, we will find \[\dfrac{dx}{dy}\] for a given function.
As, \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\]
By applying componendo and dividendo rule, we have
\[\dfrac{y-1}{y+1}=\dfrac{(1-{{x}^{4}})-(1+{{x}^{4}})}{(1-{{x}^{4}})+(1+{{x}^{4}})}\]
\[\Rightarrow \dfrac{y-1}{y+1}=\dfrac{1-{{x}^{4}}-1-{{x}^{4}}}{1-{{x}^{4}}+1+{{x}^{4}}}\]
Cancelling the like terms, we have
\[\begin{align}
& \Rightarrow \dfrac{y-1}{y+1}=\dfrac{-2{{x}^{4}}}{2} \\
& \Rightarrow \dfrac{y-1}{y+1}=-{{x}^{4}} \\
& \Rightarrow {{x}^{4}}=\dfrac{-(y-1)}{y+1} \\
& \Rightarrow {{x}^{4}}=\dfrac{1-y}{1+y} \\
\end{align}\]
Now, by taking derivative of with respect to y, we have
\[\dfrac{d({{x}^{4}})}{dy}=\dfrac{d}{dy}\left[ \dfrac{1-y}{1+y} \right]\]
Again, by applying the quotient rule, we have
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)\dfrac{d}{dy}(1-y)-(1-y)\dfrac{d}{dy}(1+y)}{{{(1+y)}^{2}}}\]
\[\begin{align}
& 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(0-1)-(1-y)(0+1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{(1+y)(-1)-(1-y)(1)}{{{(1+y)}^{2}}} \\
& \Rightarrow 4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-1-y-1+y}{{{(1+y)}^{2}}} \\
\end{align}\]
\[4{{x}^{3}}\dfrac{dx}{dy}=\dfrac{-2}{{{(1+y)}^{2}}}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{(1+y)}^{2}}}.........(ii)\]
Now as we have \[y=\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}}\].
Adding ‘1’ on both sides, we get
\[\begin{align}
& 1+y=1+\dfrac{1-{{x}^{4}}}{1+{{x}^{4}}} \\
& 1+y=\dfrac{(1+{{x}^{4}})+(1-{{x}^{4}})}{1+{{x}^{4}}} \\
& 1+y=\dfrac{2}{1+{{x}^{4}}}.........(iii) \\
\end{align}\]
Substituting equation (iii) in equation (ii), we get
\[\begin{align}
& \dfrac{dx}{dy}=\dfrac{-1}{2{{x}^{3}}{{\left( \dfrac{2}{1+{{x}^{4}}} \right)}^{2}}} \\
& \Rightarrow \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{2{{x}^{3}}{{(2)}^{2}}} \\
& \dfrac{dx}{dy}=\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}.........(iv) \\
\end{align}\]
Now multiplying equation (i) and (iv), we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=\dfrac{-8{{x}^{3}}}{{{(1+{{x}^{4}})}^{2}}}.\dfrac{-{{(1+{{x}^{4}})}^{2}}}{8{{x}^{3}}}\]
Cancelling the like terms, we get
\[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Therefore, the correct answer is option (a).
Answer is option (a)
Note: In this problem we can also directly get the answer by cancelling the like terms, i.e., \[\dfrac{dy}{dx}.\dfrac{dx}{dy}=1\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

