
If the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem for the interval $ \left[ 1,2 \right] $ and the tangent to the curve $ y=f(x) $ at $ x=\dfrac{7}{4} $ is parallel to the chord joining the points of intersection of the curve with the coordinates $ x=1 $ and $ x=2 $ . Then the value of a is?
$ \begin{align}
& \text{A}\text{. }\dfrac{35}{16} \\
& \text{B}\text{. }\dfrac{35}{48} \\
& \text{C}\text{. }\dfrac{7}{16} \\
& \text{D}\text{. }\dfrac{5}{16} \\
\end{align} $
Answer
573.9k+ views
Hint: We will use Lagrange’s mean theorem to find the value of $ a $ . The Lagrange’s mean theorem is given as $ f'(c)=\dfrac{f(b)-f(a)}{b-a} $ .
Here, $ a,b $ are the points of the function and $ c $ is the point of the curve. We put the values in the equation and obtain a desired answer.
Complete step-by-step answer:
We have given the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem for the interval $ \left[ 1,2 \right] $ and the tangent to the curve $ y=f(x) $ at $ x=\dfrac{7}{4} $ .
We have to find the value of $ a $ .
Now, as given in the question the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem for the interval [1,2].
So, according to Lagrange’s mean theorem if the function is continuous and differentiable on points $ \left[ 1,2 \right] $ , there must exists a real number $ c\in \left( 1,2 \right) $ such as
$ f'(c)=\dfrac{f(b)-f(a)}{b-a} $
$ \Rightarrow f'(c)=\dfrac{f(2)-f(1)}{2-1} $
We have $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $
So, first we put $ x=1 $ , we get
$ \begin{align}
& f(1)={{1}^{3}}-6a\times {{1}^{2}}+5\times 1 \\
& f(1)=1-6a+5 \\
& f(1)=6-6a \\
\end{align} $
Now, we put $ x=2 $ , we get
$ \begin{align}
& f(2)={{2}^{3}}-6a\times {{2}^{2}}+5\times 2 \\
& f(2)=8-24a+10 \\
& f(2)=18-24a \\
\end{align} $
Now, we have to calculate $ f'(c) $ .
We have $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $
So, $ f'(x)=3{{x}^{2}}-12ax+5\text{ }\left[ As\text{ }{{x}^{a}}=a{{x}^{a-1}} \right] $
Now, we have given that the curve $ y=f(x) $ at $ x=\dfrac{7}{4} $ is parallel to the chord joining the points of intersection of the curve with the coordinates $ x=1 $ and $ x=2 $ .
\[f'(c)=3{{\left( \dfrac{7}{4} \right)}^{2}}-12a\left( \dfrac{7}{4} \right)+5\]
Now, the Lagrange’s mean theorem will be
$ f'(c)=\dfrac{f(b)-f(a)}{b-a} $
Substituting the values in above equation, we get
$ \begin{align}
& f'(c)=\dfrac{f(2)-f(1)}{2-1} \\
& 3{{\left( \dfrac{7}{4} \right)}^{2}}-12a\left( \dfrac{7}{4} \right)+5=\dfrac{\left( 18-24a \right)-\left( 6-6a \right)}{1} \\
\end{align} $
\[\begin{align}
& 3\left( \dfrac{49}{16} \right)-21a+5=\left( 18-24a \right)-\left( 6-6a \right) \\
& \dfrac{147}{16}-21a+5=18-24a-6+6a \\
& \dfrac{147}{16}-21a+5=12-18a \\
& \dfrac{147}{16}+5-12=21a-18a \\
& \dfrac{147+80-192}{16}=3a \\
& \dfrac{35}{16}=3a \\
& a=\dfrac{35}{16\times 3} \\
& a=\dfrac{35}{48} \\
\end{align}\]
So, the value of $ a $ is $ \dfrac{35}{48} $ .
So, the correct answer is “Option B”.
Note: In this particular question it is given that the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem. If not given we need to check that the function satisfied all the necessary conditions such as the function is continuous and differentiable on the given points. If function satisfies all conditions then we apply Lagrange’s mean theorem.
Here, $ a,b $ are the points of the function and $ c $ is the point of the curve. We put the values in the equation and obtain a desired answer.
Complete step-by-step answer:
We have given the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem for the interval $ \left[ 1,2 \right] $ and the tangent to the curve $ y=f(x) $ at $ x=\dfrac{7}{4} $ .
We have to find the value of $ a $ .
Now, as given in the question the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem for the interval [1,2].
So, according to Lagrange’s mean theorem if the function is continuous and differentiable on points $ \left[ 1,2 \right] $ , there must exists a real number $ c\in \left( 1,2 \right) $ such as
$ f'(c)=\dfrac{f(b)-f(a)}{b-a} $
$ \Rightarrow f'(c)=\dfrac{f(2)-f(1)}{2-1} $
We have $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $
So, first we put $ x=1 $ , we get
$ \begin{align}
& f(1)={{1}^{3}}-6a\times {{1}^{2}}+5\times 1 \\
& f(1)=1-6a+5 \\
& f(1)=6-6a \\
\end{align} $
Now, we put $ x=2 $ , we get
$ \begin{align}
& f(2)={{2}^{3}}-6a\times {{2}^{2}}+5\times 2 \\
& f(2)=8-24a+10 \\
& f(2)=18-24a \\
\end{align} $
Now, we have to calculate $ f'(c) $ .
We have $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $
So, $ f'(x)=3{{x}^{2}}-12ax+5\text{ }\left[ As\text{ }{{x}^{a}}=a{{x}^{a-1}} \right] $
Now, we have given that the curve $ y=f(x) $ at $ x=\dfrac{7}{4} $ is parallel to the chord joining the points of intersection of the curve with the coordinates $ x=1 $ and $ x=2 $ .
\[f'(c)=3{{\left( \dfrac{7}{4} \right)}^{2}}-12a\left( \dfrac{7}{4} \right)+5\]
Now, the Lagrange’s mean theorem will be
$ f'(c)=\dfrac{f(b)-f(a)}{b-a} $
Substituting the values in above equation, we get
$ \begin{align}
& f'(c)=\dfrac{f(2)-f(1)}{2-1} \\
& 3{{\left( \dfrac{7}{4} \right)}^{2}}-12a\left( \dfrac{7}{4} \right)+5=\dfrac{\left( 18-24a \right)-\left( 6-6a \right)}{1} \\
\end{align} $
\[\begin{align}
& 3\left( \dfrac{49}{16} \right)-21a+5=\left( 18-24a \right)-\left( 6-6a \right) \\
& \dfrac{147}{16}-21a+5=18-24a-6+6a \\
& \dfrac{147}{16}-21a+5=12-18a \\
& \dfrac{147}{16}+5-12=21a-18a \\
& \dfrac{147+80-192}{16}=3a \\
& \dfrac{35}{16}=3a \\
& a=\dfrac{35}{16\times 3} \\
& a=\dfrac{35}{48} \\
\end{align}\]
So, the value of $ a $ is $ \dfrac{35}{48} $ .
So, the correct answer is “Option B”.
Note: In this particular question it is given that the function $ f(x)={{x}^{3}}-6a{{x}^{2}}+5x $ satisfies the conditions of Lagrange’s mean theorem. If not given we need to check that the function satisfied all the necessary conditions such as the function is continuous and differentiable on the given points. If function satisfies all conditions then we apply Lagrange’s mean theorem.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

