If the function $f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},\left( a>2 \right),$ then \[f\left( x+y \right)+f\left( x-y \right)\] is equal to
A.\[2f\left( x \right)f\left( y \right)\]
B. \[f\left( x \right)f\left( y \right)\]
C. $\dfrac{f\left( x \right)}{f\left( y \right)}$
D. None of these
Last updated date: 20th Mar 2023
•
Total views: 306.3k
•
Views today: 4.87k
Answer
306.3k+ views
Hint: Find f(x + y) and f(x – y) individually by the given function i.e. $f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},$
Try to simplify the relation f(x + y) + f(x – y) and then compare the simplified equation with f(x) and f(y) to get the correct answer.
Here, function f(x) is provided as
$f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},\left( a>2 \right).............\left( 1 \right)$
We need to determine the value of function f(x + y) + f(x – y)=?.
As, equation (1) is defined with respect to ‘x’, we can get f(x + y) and f(x – y) by replacing ‘x’ by (x + y) and (x – y) respectively to the given function or equation (1).
Hence, f(x + y) is given as
$f\left( x+y \right)=\dfrac{{{a}^{\left( x+y \right)}}+{{a}^{-(x+y)}}}{2}...........\left( 2 \right)$
And similarly f(x –y) can be written as
$f\left( x-y \right)=\dfrac{{{a}^{\left( x-y \right)}}+{{a}^{-\left( x-y \right)}}}{2}................\left( 3 \right)$
So, f(x + y) + f(x – Y) from equation (2) and (3), we get;
$f\left( x+y \right)+\left( x-y \right)=\dfrac{{{a}^{\left( x+y \right)}}+{{a}^{-\left( x+y \right)}}}{2}+\dfrac{{{a}^{\left( x-y \right)}}+{{a}^{-\left( x-y \right)}}}{2}..............\left( 4 \right)$
Now, we can use following property of surds to simplify equation (4);
$\begin{align}
& {{m}^{-a}}=\dfrac{1}{{{m}^{a}}} \\
& {{m}^{a}}.{{m}^{b}}={{m}^{a+b}} \\
& \dfrac{{{m}^{a}}}{{{m}^{b}}}={{m}^{a-b}} \\
\end{align}$
Hence, we can write equation (4) as
$f\left( x+y \right)+f\left( x-y \right)=\dfrac{{{a}^{x+y}}+\dfrac{1}{{{a}^{x+y}}}}{2}+\dfrac{{{a}^{x-y}}+\dfrac{1}{{{a}^{x-y}}}}{2}$
Now, using the relations ${{m}^{a+b}}={{m}^{a}}{{m}^{b}}\And {{m}^{a-b}}=\dfrac{{{m}^{a}}}{{{m}^{b}}}$, we get the above equation as;
$\begin{align}
& f\left( x+y \right)+f\left( x-y \right)=\dfrac{1}{2}\left( {{a}^{x}}.{{a}^{y}}+\dfrac{1}{{{a}^{x}}.{{a}^{y}}}+\dfrac{{{a}^{x}}}{{{a}^{y}}}+\dfrac{{{a}^{y}}}{{{a}^{x}}} \right) \\
& Or \\
& f\left( x+y \right)+f\left( x-y \right)=\dfrac{1}{2}\left( {{a}^{x}}{{a}^{y}}+\dfrac{{{a}^{x}}}{{{a}^{y}}}+\dfrac{{{a}^{y}}}{{{a}^{x}}}+\dfrac{1}{{{a}^{x}}{{a}^{y}}} \right) \\
\end{align}$
Now, taking ${{a}^{\left( x \right)}}$ common from first two brackets and $\dfrac{1}{{{a}^{x}}}$ from last two brackets, we get;
\[\dfrac{1}{2}\left( {{a}^{x}}\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right)+\dfrac{1}{{{a}^{x}}}\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right) \right)\]
Hence, $f\left( x+y \right)+f\left( x-y \right)$ can be written as
$f\left( x+y \right)+f\left( x-y \right)=\left( {{a}^{x}}+\dfrac{1}{{{a}^{x}}} \right)\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right)$
Now, using property \[\dfrac{1}{{{m}^{n}}}={{m}^{-n}}\] ,
We can simplify above equation as;
$f\left( x+y \right)+f\left( x-y \right)=\dfrac{\left( {{a}^{x}}+{{a}^{-x}} \right)\left( {{a}^{y}}+{{a}^{-y}} \right)}{2}$
Now, let us multiply by ‘2’ in numerator and denominator both ;
$f\left( x+y \right)+f\left( x-y \right)=2\left( \dfrac{{{a}^{x}}+{{a}^{-x}}}{2} \right)\left( \dfrac{{{a}^{y}}+{{a}^{-y}}}{2} \right)........\left( 5 \right)$
Now, we have $f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2}$from equation (1), hence we can replace $\dfrac{{{a}^{x}}+{{a}^{-x}}}{2}$by $f(x)$and $\dfrac{{{a}^{y}}+{{a}^{-y}}}{2}$by $f(y)$in equation (5), hence we can write equation (5) as
$f\left( x+y \right)+f\left( x-y \right)=2f\left( x \right)f\left( y \right)$
Therefore option (A) is the correct answer.
Note: Another approach for above question would be that one can simplify
$\left( \dfrac{{{a}^{x+y}}+{{a}^{-\left( x+y \right)}}}{2} \right)\And \left( \dfrac{{{a}^{x-y}}+{{a}^{-\left( x-y \right)}}}{2} \right)$ individually first before putting in equation $f\left( x+y \right)+f\left( x-y \right)$.
One can waste his/her time if he/she goes to solve the problem by solving the given options and then compare it with $f\left( x+y \right)+f\left( x-y \right)$. Hence, this procedure will take more time than provided in the solution.
One can apply property of surds as ${{a}^{-n}}=\dfrac{1}{{{a}^{\dfrac{1}{n}}}}\text{ or }{{a}^{\dfrac{1}{n}}}$ which are wrong. Correct property is given as ${{a}^{-n}}=\dfrac{1}{{{a}^{n}}}$. Hence be careful while applying the property of surds in the kinds of problems.
Try to simplify the relation f(x + y) + f(x – y) and then compare the simplified equation with f(x) and f(y) to get the correct answer.
Here, function f(x) is provided as
$f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2},\left( a>2 \right).............\left( 1 \right)$
We need to determine the value of function f(x + y) + f(x – y)=?.
As, equation (1) is defined with respect to ‘x’, we can get f(x + y) and f(x – y) by replacing ‘x’ by (x + y) and (x – y) respectively to the given function or equation (1).
Hence, f(x + y) is given as
$f\left( x+y \right)=\dfrac{{{a}^{\left( x+y \right)}}+{{a}^{-(x+y)}}}{2}...........\left( 2 \right)$
And similarly f(x –y) can be written as
$f\left( x-y \right)=\dfrac{{{a}^{\left( x-y \right)}}+{{a}^{-\left( x-y \right)}}}{2}................\left( 3 \right)$
So, f(x + y) + f(x – Y) from equation (2) and (3), we get;
$f\left( x+y \right)+\left( x-y \right)=\dfrac{{{a}^{\left( x+y \right)}}+{{a}^{-\left( x+y \right)}}}{2}+\dfrac{{{a}^{\left( x-y \right)}}+{{a}^{-\left( x-y \right)}}}{2}..............\left( 4 \right)$
Now, we can use following property of surds to simplify equation (4);
$\begin{align}
& {{m}^{-a}}=\dfrac{1}{{{m}^{a}}} \\
& {{m}^{a}}.{{m}^{b}}={{m}^{a+b}} \\
& \dfrac{{{m}^{a}}}{{{m}^{b}}}={{m}^{a-b}} \\
\end{align}$
Hence, we can write equation (4) as
$f\left( x+y \right)+f\left( x-y \right)=\dfrac{{{a}^{x+y}}+\dfrac{1}{{{a}^{x+y}}}}{2}+\dfrac{{{a}^{x-y}}+\dfrac{1}{{{a}^{x-y}}}}{2}$
Now, using the relations ${{m}^{a+b}}={{m}^{a}}{{m}^{b}}\And {{m}^{a-b}}=\dfrac{{{m}^{a}}}{{{m}^{b}}}$, we get the above equation as;
$\begin{align}
& f\left( x+y \right)+f\left( x-y \right)=\dfrac{1}{2}\left( {{a}^{x}}.{{a}^{y}}+\dfrac{1}{{{a}^{x}}.{{a}^{y}}}+\dfrac{{{a}^{x}}}{{{a}^{y}}}+\dfrac{{{a}^{y}}}{{{a}^{x}}} \right) \\
& Or \\
& f\left( x+y \right)+f\left( x-y \right)=\dfrac{1}{2}\left( {{a}^{x}}{{a}^{y}}+\dfrac{{{a}^{x}}}{{{a}^{y}}}+\dfrac{{{a}^{y}}}{{{a}^{x}}}+\dfrac{1}{{{a}^{x}}{{a}^{y}}} \right) \\
\end{align}$
Now, taking ${{a}^{\left( x \right)}}$ common from first two brackets and $\dfrac{1}{{{a}^{x}}}$ from last two brackets, we get;
\[\dfrac{1}{2}\left( {{a}^{x}}\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right)+\dfrac{1}{{{a}^{x}}}\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right) \right)\]
Hence, $f\left( x+y \right)+f\left( x-y \right)$ can be written as
$f\left( x+y \right)+f\left( x-y \right)=\left( {{a}^{x}}+\dfrac{1}{{{a}^{x}}} \right)\left( {{a}^{y}}+\dfrac{1}{{{a}^{y}}} \right)$
Now, using property \[\dfrac{1}{{{m}^{n}}}={{m}^{-n}}\] ,
We can simplify above equation as;
$f\left( x+y \right)+f\left( x-y \right)=\dfrac{\left( {{a}^{x}}+{{a}^{-x}} \right)\left( {{a}^{y}}+{{a}^{-y}} \right)}{2}$
Now, let us multiply by ‘2’ in numerator and denominator both ;
$f\left( x+y \right)+f\left( x-y \right)=2\left( \dfrac{{{a}^{x}}+{{a}^{-x}}}{2} \right)\left( \dfrac{{{a}^{y}}+{{a}^{-y}}}{2} \right)........\left( 5 \right)$
Now, we have $f(x)=\dfrac{{{a}^{x}}+{{a}^{-x}}}{2}$from equation (1), hence we can replace $\dfrac{{{a}^{x}}+{{a}^{-x}}}{2}$by $f(x)$and $\dfrac{{{a}^{y}}+{{a}^{-y}}}{2}$by $f(y)$in equation (5), hence we can write equation (5) as
$f\left( x+y \right)+f\left( x-y \right)=2f\left( x \right)f\left( y \right)$
Therefore option (A) is the correct answer.
Note: Another approach for above question would be that one can simplify
$\left( \dfrac{{{a}^{x+y}}+{{a}^{-\left( x+y \right)}}}{2} \right)\And \left( \dfrac{{{a}^{x-y}}+{{a}^{-\left( x-y \right)}}}{2} \right)$ individually first before putting in equation $f\left( x+y \right)+f\left( x-y \right)$.
One can waste his/her time if he/she goes to solve the problem by solving the given options and then compare it with $f\left( x+y \right)+f\left( x-y \right)$. Hence, this procedure will take more time than provided in the solution.
One can apply property of surds as ${{a}^{-n}}=\dfrac{1}{{{a}^{\dfrac{1}{n}}}}\text{ or }{{a}^{\dfrac{1}{n}}}$ which are wrong. Correct property is given as ${{a}^{-n}}=\dfrac{1}{{{a}^{n}}}$. Hence be careful while applying the property of surds in the kinds of problems.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
