If the function
\[f\left( x \right)=\left\{ \begin{align}
& 2x,\text{ }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x, then
(a) \[a=2,b=-1\text{ and }f\text{ is differentiable for all }x\]
(b) \[a=-2,b=1\text{ and }f\text{ is not differentiable at }x=-1,1\]
(c) \[a=2,b=-1\text{ and }f\text{ is not differentiable at }x=-1,1\]
(d) \[a=-2,b=-1\text{ and }f\text{ is not differentiable at }x=-1,1\]
Answer
383.1k+ views
Hint: First find a and b by putting \[f\left( {{1}^{-}} \right)=f\left( {{1}^{+}} \right)=f\left( 1 \right)\]and \[f\left( -{{1}^{-}} \right)=f\left( -{{1}^{+}} \right)=f\left( -1 \right)\]and then check if \[{{f}^{'}}\left( {{1}^{-}} \right)={{f}^{'}}\left( {{1}^{+}} \right)\]and \[{{f}^{'}}\left( -{{1}^{-}} \right)={{f}^{'}}\left( -{{1}^{+}} \right)\]
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1 & 2x+2,\text{ }x>1 \\
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
