If the function
\[f\left( x \right)=\left\{ \begin{align}
& 2x,\text{ }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x, then
(a) \[a=2,b=-1\text{ and }f\text{ is differentiable for all }x\]
(b) \[a=-2,b=1\text{ and }f\text{ is not differentiable at }x=-1,1\]
(c) \[a=2,b=-1\text{ and }f\text{ is not differentiable at }x=-1,1\]
(d) \[a=-2,b=-1\text{ and }f\text{ is not differentiable at }x=-1,1\]
Last updated date: 24th Mar 2023
•
Total views: 307.5k
•
Views today: 7.86k
Answer
307.5k+ views
Hint: First find a and b by putting \[f\left( {{1}^{-}} \right)=f\left( {{1}^{+}} \right)=f\left( 1 \right)\]and \[f\left( -{{1}^{-}} \right)=f\left( -{{1}^{+}} \right)=f\left( -1 \right)\]and then check if \[{{f}^{'}}\left( {{1}^{-}} \right)={{f}^{'}}\left( {{1}^{+}} \right)\]and \[{{f}^{'}}\left( -{{1}^{-}} \right)={{f}^{'}}\left( -{{1}^{+}} \right)\]
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1 & 2x+2,\text{ }x>1 \\
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
