
If the function
\[f\left( x \right)=\left\{ \begin{align}
& 2x,\text{ }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x, then
(a) \[a=2,b=-1\text{ and }f\text{ is differentiable for all }x\]
(b) \[a=-2,b=1\text{ and }f\text{ is not differentiable at }x=-1,1\]
(c) \[a=2,b=-1\text{ and }f\text{ is not differentiable at }x=-1,1\]
(d) \[a=-2,b=-1\text{ and }f\text{ is not differentiable at }x=-1,1\]
Answer
622.5k+ views
Hint: First find a and b by putting \[f\left( {{1}^{-}} \right)=f\left( {{1}^{+}} \right)=f\left( 1 \right)\]and \[f\left( -{{1}^{-}} \right)=f\left( -{{1}^{+}} \right)=f\left( -1 \right)\]and then check if \[{{f}^{'}}\left( {{1}^{-}} \right)={{f}^{'}}\left( {{1}^{+}} \right)\]and \[{{f}^{'}}\left( -{{1}^{-}} \right)={{f}^{'}}\left( -{{1}^{+}} \right)\]
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1 & 2x+2,\text{ }x>1 \\
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
We are given that
\[f\left( x \right)=\left\{ \begin{align}
& 2x\text{, }\left| x \right|\le 1 \\
& {{x}^{2}}+ax+b,\text{ }\left| x \right|>1 \\
\end{align} \right.\]
Is continuous for all real x.
We have to check the differentiability of \[f\left( x \right)\]and also find the values of a and b.
As we know that, \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x\ge 0 \\
& -x,\text{ }x<0 \\
\end{align} \right.\]
Therefore, \[\left| x \right|\le 1\text{ means }-1\le x\le 1\]
And \[\left| x \right|>1\text{ means }x>1\text{ and }x<-1\]
Therefore, we get
\[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+ax+b,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+ax+b,\text{ }x>1 \\
\end{align} \right.\]
As we are given that f (x) is continuous for all \[x\in R,\text{ therefore }f\left( x \right)\]would be continuous for \[x=1\text{ and }x=-1\]as well.
For \[f\left( x \right)\]to be continuous at \[x=1\]
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)....\left( i \right)\]
We are given that for \[x>1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore, \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)={{\left( 1 \right)}^{2}}+a\left( 1 \right)+b=1+a+b\]
Also, we are given that for \[-1\le x\le 1\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=2\left( 1 \right)=2\]
Also, \[f\left( 1 \right)=2\left( 1 \right)=2\]
By putting these values in equation (i)
We get, \[1+a+b=2\]
Or, \[a+b=2-1\]
Hence, we get \[a+b=1.....\left( ii \right)\]
Now, for \[f\left( x \right)\]to be continuous at \[x=-1\]
\[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( -1 \right)....\left( iii \right)\]
We are given that for \[x\ge -1,\text{ }f\left( x \right)=2x\]
Therefore, \[\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2\left( -1 \right)=-2\]
Also, \[f\left( -1 \right)=2\left( -1 \right)=-2\]
Also, we are given that for \[x<-1,\text{ }f\left( x \right)={{x}^{2}}+ax+b\]
Therefore,\[\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,={{\left( -1 \right)}^{2}}+a\left( -1 \right)+b\]\[=1-a+b\]
By putting these values in equation (iii)
We get, \[-2=1-a+b=-2\]
Or, \[1-a+b=-2\]
\[a-b=3....\left( iv \right)\]
Taking equation (ii) and (iv) together
That is, \[a+b=1....\left( v \right)\]
\[a-b=3....\left( vi \right)\]
Adding these 2 equations,
We get \[\left( a+b \right)+\left( a-b \right)=4\]
\[\Rightarrow 2a=4\]
Therefore, we get \[a=2\]
By putting the values of a in equation (v), we get
\[\begin{align}
& 2+b=1 \\
& b=1-2 \\
\end{align}\]
Therefore, we get \[b=-1\]
Therefore we get, \[f\left( x \right)=\left\{ \begin{align}
& {{x}^{2}}+2x-1,\text{ }x<-1 \\
& 2x,\text{ }-1\le x\le 1 \\
& {{x}^{2}}+2x-1,\text{ }x>1 \\
\end{align} \right.\]
Now to check the differentiability of f (x), we will differentiate f (x) with respect to x.
Since, we know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& 2x+2,\text{ }x<-1 \\
& 2,\text{ }-1
\end{align} \right.\]
For f (x) to be differentiable at x = -1
\[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<-1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\left( -1 \right)+2=0\]
For, \[x>-1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
Since, \[\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = -1.
Also, for f (x) to be differentiable at x = 1
\[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\text{finite quantity}\]
For \[x<1,\text{ }{{f}^{'}}\left( x \right)=2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2\]
\[x>1,\text{ }{{f}^{'}}\left( x \right)=2x+2\]
Therefore, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=2+2=4\]
Since, \[\underset{x\to {{\left( 1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( 1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\], therefore f (x) is not differentiable at x = 1.
Therefore, a = 2, b = -1 and f is not differentiable at x = -1, 1
Hence, option (c) is correct.
Note: Students should always remember to expand the modulus function first because they often mistake taking |x|< 1 as x < 1 and |x|> 1 as x > 1 but actually |x|< 1 means -1 < x < 1 and |x| > 1 means x > 1 and x < -1
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

