If the expression $\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)$ has a value $ \geqslant 3$. Then x should belong to-
(a) $0 \leqslant x \leqslant \dfrac{\pi }{2}$
(b) $0 \leqslant x \leqslant \pi \,$
(c) $x \in \mathbb{R},\forall x$
(d) $x \in \mathbb{R}$ excepting $x = \dfrac{{n\pi }}{2},n \in \mathbb{Z}$
Answer
Verified
476.7k+ views
Hint: In this question we will firstly try to reduce the given expression in simpler form then we will check the points where the reduced function can become not defined. Then finally we do not include those points in values of $x$.
Complete step-by-step answer:
The given expression is $\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \geqslant 3$ -(1)
Let $f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)$
So now solving the above expression,
$
f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \\
{\text{ = 1 - }}\cot x + {\cot ^2}x + \tan x - 1 + \cot x + {\tan ^2}x - \tan x + 1 \\
{\text{ = }}{\tan ^2}x + {\cot ^2}x + 1 \\
$ -(2)
Now using (1) and (2) we can write,
$
f\left( x \right) = {\tan ^2}x + {\cot ^2}x + 1 \geqslant 3 \\
\Rightarrow {\tan ^2}x + {\cot ^2}x \geqslant 2 \\
{\text{ }} \\
$ -(3)
So, here in (3) equation $x \in \mathbb{R}$ satisfy the equation except the points where $\tan x$ and $\cot x$ are not defined. And we know that,
$\tan x$ is not defined when $x \in \dfrac{\pi }{2} + n\pi $, $n \in \mathbb{Z}$
$\cot x$ is not defined when $x \in n\pi $, $n \in \mathbb{Z}$
So, (3) is not defined when,
$
x \in \dfrac{\pi }{2} + n\pi \cup n\pi \\
x \in \left\{ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{{5\pi }}{2},\dfrac{{7\pi }}{2}, - - - - } \right\} \cup \left\{ {0,\pi ,2\pi ,3\pi , - - - - } \right\} \\
x \in n\pi \\
$ ,$n \in \mathbb{Z}$
Therefore, (1) satisfies when $x \in \mathbb{R}$ excepting $x \in n\pi ,n \in \mathbb{Z}$
Hence, option (d) is the correct answer.
Note: In the above question when we got (3) equation we can further simplify it into $\sin x$ and $\cos x$. And then we can find the values of x for which equation is not defined. This would be another method to solve this question.
Complete step-by-step answer:
The given expression is $\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \geqslant 3$ -(1)
Let $f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)$
So now solving the above expression,
$
f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \\
{\text{ = 1 - }}\cot x + {\cot ^2}x + \tan x - 1 + \cot x + {\tan ^2}x - \tan x + 1 \\
{\text{ = }}{\tan ^2}x + {\cot ^2}x + 1 \\
$ -(2)
Now using (1) and (2) we can write,
$
f\left( x \right) = {\tan ^2}x + {\cot ^2}x + 1 \geqslant 3 \\
\Rightarrow {\tan ^2}x + {\cot ^2}x \geqslant 2 \\
{\text{ }} \\
$ -(3)
So, here in (3) equation $x \in \mathbb{R}$ satisfy the equation except the points where $\tan x$ and $\cot x$ are not defined. And we know that,
$\tan x$ is not defined when $x \in \dfrac{\pi }{2} + n\pi $, $n \in \mathbb{Z}$
$\cot x$ is not defined when $x \in n\pi $, $n \in \mathbb{Z}$
So, (3) is not defined when,
$
x \in \dfrac{\pi }{2} + n\pi \cup n\pi \\
x \in \left\{ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{{5\pi }}{2},\dfrac{{7\pi }}{2}, - - - - } \right\} \cup \left\{ {0,\pi ,2\pi ,3\pi , - - - - } \right\} \\
x \in n\pi \\
$ ,$n \in \mathbb{Z}$
Therefore, (1) satisfies when $x \in \mathbb{R}$ excepting $x \in n\pi ,n \in \mathbb{Z}$
Hence, option (d) is the correct answer.
Note: In the above question when we got (3) equation we can further simplify it into $\sin x$ and $\cos x$. And then we can find the values of x for which equation is not defined. This would be another method to solve this question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE