
If the coordinates of the point A, B, C, D be $(1,2,3),(4,5,7),( - 4,3, - 6)$and $\left( {2,9,2} \right)$respectively. Then find the angle between the line AB and CD
Answer
615.6k+ views
Hint: Write the direction ratios of both the lines.
The coordinates of A, B, C, D are given to us as $(1,2,3),(4,5,7),( - 4,3, - 6)$and $\left( {2,9,2} \right)$respectively.
If a line passes through two points that is $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$then the direction ratio of that line can be written as ${x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1}$
Using this concept we can write the direction ratios of line AB as $\left( {4 - 1),(5 - 2),(7 - 3} \right)$which implies
$ \Rightarrow \left( {{a_1},{b_1},{c_1}} \right) = 3,3,4$
Now the direction ratios of line CD is $\left( {2 - ( - 4)),(9 - 3),(2 - ( - 6)} \right)$
$ \Rightarrow \left( {{a_2},{b_2},{c_2}} \right) = 6,6,8$
Now if two lines are parallel then their direction ratios satisfy $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $then lines are parallel
So using the above concept we have $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$as $\dfrac{3}{6} = \dfrac{3}{6} = \dfrac{4}{8}$which is
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{1}{2}$
Hence line AB is parallel to CD
Thus the angle between AB and CD is either ${0^\circ }{\text{ or 18}}{{\text{0}}^\circ }$.
Note- These category of questions is always approached using the concept of direction ratios as being stated above, now the point to remember is if the direction ratios are following the equation that $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $ then both lines are said to be parallel.
The coordinates of A, B, C, D are given to us as $(1,2,3),(4,5,7),( - 4,3, - 6)$and $\left( {2,9,2} \right)$respectively.
If a line passes through two points that is $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$then the direction ratio of that line can be written as ${x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1}$
Using this concept we can write the direction ratios of line AB as $\left( {4 - 1),(5 - 2),(7 - 3} \right)$which implies
$ \Rightarrow \left( {{a_1},{b_1},{c_1}} \right) = 3,3,4$
Now the direction ratios of line CD is $\left( {2 - ( - 4)),(9 - 3),(2 - ( - 6)} \right)$
$ \Rightarrow \left( {{a_2},{b_2},{c_2}} \right) = 6,6,8$
Now if two lines are parallel then their direction ratios satisfy $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $then lines are parallel
So using the above concept we have $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$as $\dfrac{3}{6} = \dfrac{3}{6} = \dfrac{4}{8}$which is
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{1}{2}$
Hence line AB is parallel to CD
Thus the angle between AB and CD is either ${0^\circ }{\text{ or 18}}{{\text{0}}^\circ }$.
Note- These category of questions is always approached using the concept of direction ratios as being stated above, now the point to remember is if the direction ratios are following the equation that $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $ then both lines are said to be parallel.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

