
If the coordinates of the point A, B, C, D be $(1,2,3),(4,5,7),( - 4,3, - 6)$and $\left( {2,9,2} \right)$respectively. Then find the angle between the line AB and CD
Answer
606.6k+ views
Hint: Write the direction ratios of both the lines.
The coordinates of A, B, C, D are given to us as $(1,2,3),(4,5,7),( - 4,3, - 6)$and $\left( {2,9,2} \right)$respectively.
If a line passes through two points that is $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$then the direction ratio of that line can be written as ${x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1}$
Using this concept we can write the direction ratios of line AB as $\left( {4 - 1),(5 - 2),(7 - 3} \right)$which implies
$ \Rightarrow \left( {{a_1},{b_1},{c_1}} \right) = 3,3,4$
Now the direction ratios of line CD is $\left( {2 - ( - 4)),(9 - 3),(2 - ( - 6)} \right)$
$ \Rightarrow \left( {{a_2},{b_2},{c_2}} \right) = 6,6,8$
Now if two lines are parallel then their direction ratios satisfy $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $then lines are parallel
So using the above concept we have $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$as $\dfrac{3}{6} = \dfrac{3}{6} = \dfrac{4}{8}$which is
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{1}{2}$
Hence line AB is parallel to CD
Thus the angle between AB and CD is either ${0^\circ }{\text{ or 18}}{{\text{0}}^\circ }$.
Note- These category of questions is always approached using the concept of direction ratios as being stated above, now the point to remember is if the direction ratios are following the equation that $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $ then both lines are said to be parallel.
The coordinates of A, B, C, D are given to us as $(1,2,3),(4,5,7),( - 4,3, - 6)$and $\left( {2,9,2} \right)$respectively.
If a line passes through two points that is $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$then the direction ratio of that line can be written as ${x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1}$
Using this concept we can write the direction ratios of line AB as $\left( {4 - 1),(5 - 2),(7 - 3} \right)$which implies
$ \Rightarrow \left( {{a_1},{b_1},{c_1}} \right) = 3,3,4$
Now the direction ratios of line CD is $\left( {2 - ( - 4)),(9 - 3),(2 - ( - 6)} \right)$
$ \Rightarrow \left( {{a_2},{b_2},{c_2}} \right) = 6,6,8$
Now if two lines are parallel then their direction ratios satisfy $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $then lines are parallel
So using the above concept we have $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$as $\dfrac{3}{6} = \dfrac{3}{6} = \dfrac{4}{8}$which is
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{1}{2}$
Hence line AB is parallel to CD
Thus the angle between AB and CD is either ${0^\circ }{\text{ or 18}}{{\text{0}}^\circ }$.
Note- These category of questions is always approached using the concept of direction ratios as being stated above, now the point to remember is if the direction ratios are following the equation that $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} = \lambda $ then both lines are said to be parallel.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

