Answer

Verified

450.3k+ views

Hint: In this question apply the property of transpose (i.e. rows changed into column and column changed into rows) later on apply the property of matrix multiplication, so use these concepts to reach the solution of the question.

Given matrix is

$A = \left[ {\begin{array}{*{20}{c}}

{ - 2} \\

4 \\

5

\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}

1&3&{ - 6}

\end{array}} \right]$

Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,

$A' = \left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5

\end{array}} \right]$

And the transpose of B is

$B' = \left[ {\begin{array}{*{20}{c}}

1 \\

3 \\

{ - 6}

\end{array}} \right]$

Now the given equation is

${\left( {AB} \right)^\prime } = B'A'$

Now, consider L.H.S

$ = {\left( {AB} \right)^\prime }$

First calculate AB we have

$AB = \left[ {\begin{array}{*{20}{c}}

{ - 2} \\

4 \\

5

\end{array}} \right]\left[ {\begin{array}{*{20}{c}}

1&3&{ - 6}

\end{array}} \right]$

Now apply matrix multiplication we have

$AB = \left[ {\begin{array}{*{20}{c}}

{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\

{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\

{5 \times 1}&{5 \times 3}&{5 \times - 6}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{ - 2}&{ - 6}&{12} \\

4&{12}&{ - 24} \\

5&{15}&{ - 30}

\end{array}} \right]$

Now take transpose of above matrix we have

${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5 \\

{ - 6}&{12}&{15} \\

{12}&{ - 24}&{ - 30}

\end{array}} \right]$………… (1)

Now consider R.H.S

$ = B'A'$

$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}

1 \\

3 \\

{ - 6}

\end{array}} \right]\left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5

\end{array}} \right]$

Now apply matrix multiplication we have

$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}

{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\

{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\

{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5 \\

{ - 6}&{12}&{15} \\

{12}&{ - 24}&{ - 30}

\end{array}} \right]$……………… (2)

Now from equation (1) and (2)

L.H.S = R.H.S

Hence verified.

Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.

Given matrix is

$A = \left[ {\begin{array}{*{20}{c}}

{ - 2} \\

4 \\

5

\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}

1&3&{ - 6}

\end{array}} \right]$

Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,

$A' = \left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5

\end{array}} \right]$

And the transpose of B is

$B' = \left[ {\begin{array}{*{20}{c}}

1 \\

3 \\

{ - 6}

\end{array}} \right]$

Now the given equation is

${\left( {AB} \right)^\prime } = B'A'$

Now, consider L.H.S

$ = {\left( {AB} \right)^\prime }$

First calculate AB we have

$AB = \left[ {\begin{array}{*{20}{c}}

{ - 2} \\

4 \\

5

\end{array}} \right]\left[ {\begin{array}{*{20}{c}}

1&3&{ - 6}

\end{array}} \right]$

Now apply matrix multiplication we have

$AB = \left[ {\begin{array}{*{20}{c}}

{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\

{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\

{5 \times 1}&{5 \times 3}&{5 \times - 6}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{ - 2}&{ - 6}&{12} \\

4&{12}&{ - 24} \\

5&{15}&{ - 30}

\end{array}} \right]$

Now take transpose of above matrix we have

${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5 \\

{ - 6}&{12}&{15} \\

{12}&{ - 24}&{ - 30}

\end{array}} \right]$………… (1)

Now consider R.H.S

$ = B'A'$

$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}

1 \\

3 \\

{ - 6}

\end{array}} \right]\left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5

\end{array}} \right]$

Now apply matrix multiplication we have

$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}

{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\

{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\

{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}

\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}

{ - 2}&4&5 \\

{ - 6}&{12}&{15} \\

{12}&{ - 24}&{ - 30}

\end{array}} \right]$……………… (2)

Now from equation (1) and (2)

L.H.S = R.H.S

Hence verified.

Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How many crores make 10 million class 7 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths