If the column matrix $A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and row matrix $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$ then verify that ${\left( {AB} \right)^\prime } = B'A'$.
Last updated date: 28th Mar 2023
•
Total views: 308.7k
•
Views today: 2.85k
Answer
308.7k+ views
Hint: In this question apply the property of transpose (i.e. rows changed into column and column changed into rows) later on apply the property of matrix multiplication, so use these concepts to reach the solution of the question.
Given matrix is
$A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,
$A' = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
And the transpose of B is
$B' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]$
Now the given equation is
${\left( {AB} \right)^\prime } = B'A'$
Now, consider L.H.S
$ = {\left( {AB} \right)^\prime }$
First calculate AB we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now apply matrix multiplication we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\
{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\
{5 \times 1}&{5 \times 3}&{5 \times - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 6}&{12} \\
4&{12}&{ - 24} \\
5&{15}&{ - 30}
\end{array}} \right]$
Now take transpose of above matrix we have
${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$………… (1)
Now consider R.H.S
$ = B'A'$
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
Now apply matrix multiplication we have
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\
{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\
{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$……………… (2)
Now from equation (1) and (2)
L.H.S = R.H.S
Hence verified.
Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.
Given matrix is
$A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,
$A' = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
And the transpose of B is
$B' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]$
Now the given equation is
${\left( {AB} \right)^\prime } = B'A'$
Now, consider L.H.S
$ = {\left( {AB} \right)^\prime }$
First calculate AB we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now apply matrix multiplication we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\
{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\
{5 \times 1}&{5 \times 3}&{5 \times - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 6}&{12} \\
4&{12}&{ - 24} \\
5&{15}&{ - 30}
\end{array}} \right]$
Now take transpose of above matrix we have
${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$………… (1)
Now consider R.H.S
$ = B'A'$
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
Now apply matrix multiplication we have
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\
{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\
{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$……………… (2)
Now from equation (1) and (2)
L.H.S = R.H.S
Hence verified.
Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
