
If the column matrix $A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and row matrix $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$ then verify that ${\left( {AB} \right)^\prime } = B'A'$.
Answer
621.9k+ views
Hint: In this question apply the property of transpose (i.e. rows changed into column and column changed into rows) later on apply the property of matrix multiplication, so use these concepts to reach the solution of the question.
Given matrix is
$A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,
$A' = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
And the transpose of B is
$B' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]$
Now the given equation is
${\left( {AB} \right)^\prime } = B'A'$
Now, consider L.H.S
$ = {\left( {AB} \right)^\prime }$
First calculate AB we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now apply matrix multiplication we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\
{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\
{5 \times 1}&{5 \times 3}&{5 \times - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 6}&{12} \\
4&{12}&{ - 24} \\
5&{15}&{ - 30}
\end{array}} \right]$
Now take transpose of above matrix we have
${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$………… (1)
Now consider R.H.S
$ = B'A'$
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
Now apply matrix multiplication we have
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\
{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\
{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$……………… (2)
Now from equation (1) and (2)
L.H.S = R.H.S
Hence verified.
Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.
Given matrix is
$A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,
$A' = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
And the transpose of B is
$B' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]$
Now the given equation is
${\left( {AB} \right)^\prime } = B'A'$
Now, consider L.H.S
$ = {\left( {AB} \right)^\prime }$
First calculate AB we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now apply matrix multiplication we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\
{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\
{5 \times 1}&{5 \times 3}&{5 \times - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 6}&{12} \\
4&{12}&{ - 24} \\
5&{15}&{ - 30}
\end{array}} \right]$
Now take transpose of above matrix we have
${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$………… (1)
Now consider R.H.S
$ = B'A'$
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
Now apply matrix multiplication we have
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\
{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\
{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$……………… (2)
Now from equation (1) and (2)
L.H.S = R.H.S
Hence verified.
Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

