If T be any point on the tangent at any point P of a parabola, and if TL be perpendicular to the focal radius SP and TN be perpendicular to the directrix, prove that SL = TN.
Answer
363k+ views
Hint: Choosing any point on directrix in form of $\left( -a,0 \right)$, a point on focal point in form of $\left( a,0 \right)$, while a point on parabola as $\left( a{{t}^{2}},2at \right)$ will make the problem very comfortable.
Complete step-by-step answer:
Here, we have a parabola, thus considering a general standard equation for a parabola as, ${{y}^{2}}=4ax$ when the directrix of a parabola is parallel to the y-axis, where $a$ is the distance from the origin to the focus.
Now, considering the given conditions, we have
T, a point on the tangent of a parabola at any point P, and TL be the perpendicular to the focal radius SP and TN be perpendicular to the directrix.
Now, we will have to define what are the major components in a parabola, i.e.,
Focal radius is the line segment stretched from focus of parabola to any point such as P on the parabola, while directrix is the line parallel to the major axis of a parabola, in this case it’s parallel to the y-axis.
Thus, as per question, we have
Any general point in a parabola is $P\left( a{{t}^{2}},2at \right)$ and point on a tangent be $T\left( h,k \right)$.
Thus, the equation of tangent $TP$ can be,
$ty=x+a{{t}^{2}}...\text{ }\left( 1 \right)$
Since, this line passes through point $T\left( h,k \right)$, then it must satisfy the equation (1) as well, i.e.,
$\begin{align}
& \Rightarrow ty=x+a{{t}^{2}} \\
& \Rightarrow t\left( k \right)=\left( h \right)+a{{t}^{2}} \\
& \Rightarrow tk=h+a{{t}^{2}}...\text{ }\left( 2 \right) \\
\end{align}$
Now, forming the equation for line $SP$, we need points lying on the line and its slope, and general equation for slope of a line is,
Slope of line $y=mx+c$ is $m$, i.e., $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$, where $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ are the points in given line.
Similarly, slope for the line $SP$ with points $S\left( a,0 \right)$ and $P\left( a{{t}^{2}},2at \right)$, we have
Slope of $SP$= ${{m}_{SP}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at-0}{a{{t}^{2}}-a}=\dfrac{2at}{a\left( {{t}^{2}}-1 \right)}=\dfrac{2t}{{{t}^{2}}-1}...\text{ (3)}$
Now, as line $TL$ is perpendicular to line $SP$, then its slope can be defined as,
${{m}_{TL}}=\dfrac{-1}{{{m}_{SP}}}$
As per the rules of slope of perpendicular lines.
Thus, from equation (3), we get
${{m}_{TL}}=\dfrac{-1}{\left( \dfrac{2t}{{{t}^{2}}-1} \right)}=\dfrac{-\left( {{t}^{2}}-1 \right)}{2t}=\dfrac{1-{{t}^{2}}}{2t}...\text{ }\left( 4 \right)$
Now, the equation for line $TL$ from a general equation of a line, i.e.,
\[\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)\]
Thus, for line $TL$ equation with point $T\left( h,k \right)$ from equation (4) will be,
\[\begin{align}
& \Rightarrow \left( y-{{y}_{1}} \right)={{m}_{TL}}\left( x-{{x}_{1}} \right) \\
& \Rightarrow y-k=\left( \dfrac{1-{{t}^{2}}}{2t} \right)\left( x-h \right) \\
\end{align}\]
On cross-multiplying both sides, we get
\[\begin{align}
& \Rightarrow y-k=\left( \dfrac{1-{{t}^{2}}}{2t} \right)\left( x-h \right) \\
& \Rightarrow 2t\left( y-k \right)=\left( 1-{{t}^{2}} \right)\left( x-h \right) \\
& \Rightarrow 2ty-2tk=x\left( 1-{{t}^{2}} \right)-h\left( 1-{{t}^{2}} \right) \\
& \Rightarrow 2ty-x\left( 1-{{t}^{2}} \right)+h\left( 1-{{t}^{2}} \right)-2tk=0 \\
& \Rightarrow x\left( {{t}^{2}}-1 \right)+2ty+h\left( 1-{{t}^{2}} \right)-2tk=0....\text{ }\left( 5 \right) \\
\end{align}\]
Let us now say distance $SL={{d}_{1}}$, i.e., the perpendicular distance from line $TL$.
Then, from equation of the perpendicular distance of a point $\left( {{x}_{1}},{{y}_{1}} \right)$ from a line, we have
$d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|$
Thus, for distance of a point $S\left( a,0 \right)$ from line $TL$, we have
$\begin{align}
& {{d}_{1}}=SL=\left| \dfrac{a\left( {{t}^{2}}-1 \right)+\left( 0 \right)\left( 2y \right)+h\left( 1-{{t}^{2}} \right)-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+{{\left( 2t \right)}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+0+h-h{{t}^{2}}-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+4{{t}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+4{{t}^{2}}}} \right|
\end{align}$
Now, from equation (2), we have $kt=h+a{{t}^{2}}$.
On substituting this value in above equation, we get
$\begin{align}
& {{d}_{1}}=\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+4{{t}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2\left( h+a{{t}^{2}} \right)}{\sqrt{{{t}^{4}}+1-2{{t}^{2}}+4{{t}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2h-2a{{t}^{2}}}{\sqrt{{{t}^{4}}+1+2{{t}^{2}}}} \right| \\
& =\left| \dfrac{-h-a-a{{t}^{2}}-h{{t}^{2}}}{\sqrt{{{\left( {{t}^{2}}+1 \right)}^{2}}}} \right| \\
& =\left| \dfrac{-h\left( 1+{{t}^{2}} \right)-a\left( 1+{{t}^{2}} \right)}{{{t}^{2}}+1} \right| \\
& =\left| \dfrac{-\left( h+a \right)\left( 1+{{t}^{2}} \right)}{{{t}^{2}}+1} \right|
\end{align}$
Cancelling out the common terms from numerator and denominator, we get
$\begin{align}
& {{d}_{1}}=\left| \dfrac{-\left( h+a \right)\left( 1+{{t}^{2}} \right)}{{{t}^{2}}+1} \right| \\
& =\left| -\left( h+a \right) \right| \\
& =h+a
\end{align}$
Thus, $SL={{d}_{1}}=h+a...\text{ }\left( 6 \right)$
Similarly, for length $TN$, i.e., distance of point $T$ to point $N\left( -a,0 \right)$ on the line of directrix, we have
Let’s say, $TN={{d}_{2}}$
$\begin{align}
& {{d}_{2}}=\left| \dfrac{h\left( 1 \right)+k\left( 0 \right)+a}{\sqrt{{{1}^{2}}+{{0}^{2}}}} \right| \\
& =\left| \dfrac{h+a}{1} \right| \\
& =h+a
\end{align}$
Thus, $TN={{d}_{2}}=h+a...\text{ }\left( 7 \right)$
Hence, from equation (6) and (7), we can say that ${{d}_{1}}={{d}_{2}}=SL=TN=h+a$.
Note: An important point to remember can be, while considering general points on parabola or on directrix or on focal point, they should be considered properly as per their properties rather than a general $\left( x,y \right)$ format to avoid confusions while forming equations.
Complete step-by-step answer:
Here, we have a parabola, thus considering a general standard equation for a parabola as, ${{y}^{2}}=4ax$ when the directrix of a parabola is parallel to the y-axis, where $a$ is the distance from the origin to the focus.
Now, considering the given conditions, we have
T, a point on the tangent of a parabola at any point P, and TL be the perpendicular to the focal radius SP and TN be perpendicular to the directrix.
Now, we will have to define what are the major components in a parabola, i.e.,
Focal radius is the line segment stretched from focus of parabola to any point such as P on the parabola, while directrix is the line parallel to the major axis of a parabola, in this case it’s parallel to the y-axis.
Thus, as per question, we have

Any general point in a parabola is $P\left( a{{t}^{2}},2at \right)$ and point on a tangent be $T\left( h,k \right)$.
Thus, the equation of tangent $TP$ can be,
$ty=x+a{{t}^{2}}...\text{ }\left( 1 \right)$
Since, this line passes through point $T\left( h,k \right)$, then it must satisfy the equation (1) as well, i.e.,
$\begin{align}
& \Rightarrow ty=x+a{{t}^{2}} \\
& \Rightarrow t\left( k \right)=\left( h \right)+a{{t}^{2}} \\
& \Rightarrow tk=h+a{{t}^{2}}...\text{ }\left( 2 \right) \\
\end{align}$
Now, forming the equation for line $SP$, we need points lying on the line and its slope, and general equation for slope of a line is,
Slope of line $y=mx+c$ is $m$, i.e., $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$, where $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ are the points in given line.
Similarly, slope for the line $SP$ with points $S\left( a,0 \right)$ and $P\left( a{{t}^{2}},2at \right)$, we have
Slope of $SP$= ${{m}_{SP}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at-0}{a{{t}^{2}}-a}=\dfrac{2at}{a\left( {{t}^{2}}-1 \right)}=\dfrac{2t}{{{t}^{2}}-1}...\text{ (3)}$
Now, as line $TL$ is perpendicular to line $SP$, then its slope can be defined as,
${{m}_{TL}}=\dfrac{-1}{{{m}_{SP}}}$
As per the rules of slope of perpendicular lines.
Thus, from equation (3), we get
${{m}_{TL}}=\dfrac{-1}{\left( \dfrac{2t}{{{t}^{2}}-1} \right)}=\dfrac{-\left( {{t}^{2}}-1 \right)}{2t}=\dfrac{1-{{t}^{2}}}{2t}...\text{ }\left( 4 \right)$
Now, the equation for line $TL$ from a general equation of a line, i.e.,
\[\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)\]
Thus, for line $TL$ equation with point $T\left( h,k \right)$ from equation (4) will be,
\[\begin{align}
& \Rightarrow \left( y-{{y}_{1}} \right)={{m}_{TL}}\left( x-{{x}_{1}} \right) \\
& \Rightarrow y-k=\left( \dfrac{1-{{t}^{2}}}{2t} \right)\left( x-h \right) \\
\end{align}\]
On cross-multiplying both sides, we get
\[\begin{align}
& \Rightarrow y-k=\left( \dfrac{1-{{t}^{2}}}{2t} \right)\left( x-h \right) \\
& \Rightarrow 2t\left( y-k \right)=\left( 1-{{t}^{2}} \right)\left( x-h \right) \\
& \Rightarrow 2ty-2tk=x\left( 1-{{t}^{2}} \right)-h\left( 1-{{t}^{2}} \right) \\
& \Rightarrow 2ty-x\left( 1-{{t}^{2}} \right)+h\left( 1-{{t}^{2}} \right)-2tk=0 \\
& \Rightarrow x\left( {{t}^{2}}-1 \right)+2ty+h\left( 1-{{t}^{2}} \right)-2tk=0....\text{ }\left( 5 \right) \\
\end{align}\]
Let us now say distance $SL={{d}_{1}}$, i.e., the perpendicular distance from line $TL$.
Then, from equation of the perpendicular distance of a point $\left( {{x}_{1}},{{y}_{1}} \right)$ from a line, we have
$d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|$
Thus, for distance of a point $S\left( a,0 \right)$ from line $TL$, we have
$\begin{align}
& {{d}_{1}}=SL=\left| \dfrac{a\left( {{t}^{2}}-1 \right)+\left( 0 \right)\left( 2y \right)+h\left( 1-{{t}^{2}} \right)-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+{{\left( 2t \right)}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+0+h-h{{t}^{2}}-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+4{{t}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+4{{t}^{2}}}} \right|
\end{align}$
Now, from equation (2), we have $kt=h+a{{t}^{2}}$.
On substituting this value in above equation, we get
$\begin{align}
& {{d}_{1}}=\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2tk}{\sqrt{{{\left( {{t}^{2}}-1 \right)}^{2}}+4{{t}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2\left( h+a{{t}^{2}} \right)}{\sqrt{{{t}^{4}}+1-2{{t}^{2}}+4{{t}^{2}}}} \right| \\
& =\left| \dfrac{a{{t}^{2}}-a+h-h{{t}^{2}}-2h-2a{{t}^{2}}}{\sqrt{{{t}^{4}}+1+2{{t}^{2}}}} \right| \\
& =\left| \dfrac{-h-a-a{{t}^{2}}-h{{t}^{2}}}{\sqrt{{{\left( {{t}^{2}}+1 \right)}^{2}}}} \right| \\
& =\left| \dfrac{-h\left( 1+{{t}^{2}} \right)-a\left( 1+{{t}^{2}} \right)}{{{t}^{2}}+1} \right| \\
& =\left| \dfrac{-\left( h+a \right)\left( 1+{{t}^{2}} \right)}{{{t}^{2}}+1} \right|
\end{align}$
Cancelling out the common terms from numerator and denominator, we get
$\begin{align}
& {{d}_{1}}=\left| \dfrac{-\left( h+a \right)\left( 1+{{t}^{2}} \right)}{{{t}^{2}}+1} \right| \\
& =\left| -\left( h+a \right) \right| \\
& =h+a
\end{align}$
Thus, $SL={{d}_{1}}=h+a...\text{ }\left( 6 \right)$
Similarly, for length $TN$, i.e., distance of point $T$ to point $N\left( -a,0 \right)$ on the line of directrix, we have
Let’s say, $TN={{d}_{2}}$
$\begin{align}
& {{d}_{2}}=\left| \dfrac{h\left( 1 \right)+k\left( 0 \right)+a}{\sqrt{{{1}^{2}}+{{0}^{2}}}} \right| \\
& =\left| \dfrac{h+a}{1} \right| \\
& =h+a
\end{align}$
Thus, $TN={{d}_{2}}=h+a...\text{ }\left( 7 \right)$
Hence, from equation (6) and (7), we can say that ${{d}_{1}}={{d}_{2}}=SL=TN=h+a$.
Note: An important point to remember can be, while considering general points on parabola or on directrix or on focal point, they should be considered properly as per their properties rather than a general $\left( x,y \right)$ format to avoid confusions while forming equations.
Last updated date: 01st Oct 2023
•
Total views: 363k
•
Views today: 9.63k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
