Answer
Verified
483.3k+ views
Hint: In this question apply determinant rule without opening the determinant doing this we can easily solve the determinant so, first of all add the second and third column in the first column.
Given condition is
$s = p + q + r$
Then we have to find out the value of
$\left| {\begin{array}{*{20}{c}}
{s + r}&p&q \\
r&{s + p}&q \\
r&p&{s + q}
\end{array}} \right|$
Now simplify the determinant using determinant rule and apply,
${c_1} \to {c_1} + {c_2} + {c_3}$, we have
Therefore above determinant becomes
$\left| {\begin{array}{*{20}{c}}
{s + p + q + r}&p&q \\
{s + p + q + r}&{s + p}&q \\
{s + p + q + r}&p&{s + q}
\end{array}} \right|$
Now take $\left( {s + p + q + r} \right)$ outside the determinant from every row we have
$\left( {s + p + q + r} \right)\left| {\begin{array}{*{20}{c}}
1&p&q \\
1&{s + p}&q \\
1&p&{s + q}
\end{array}} \right|$
Now again simplify the determinant using determinant rule and apply,
${R_2} \to {R_2} - {R_1},{\text{ }}{R_3} \to {R_3} - {R_1}$, we have
$\left( {s + p + q + r} \right)\left| {\begin{array}{*{20}{c}}
1&p&q \\
0&s&0 \\
0&0&s
\end{array}} \right|$
Now open the determinant we have
$\left( {s + p + q + r} \right)\left[ {1\left| {\begin{array}{*{20}{c}}
s&0 \\
0&s
\end{array}} \right| - p\left| {\begin{array}{*{20}{c}}
0&0 \\
0&s
\end{array}} \right| + q\left| {\begin{array}{*{20}{c}}
0&s \\
0&0
\end{array}} \right|} \right]$
$
\left( {s + p + q + r} \right)\left[ {1\left( {{s^2} - 0} \right) - p\left( 0 \right) + q\left( 0 \right)} \right] \\
= \left( {s + p + q + r} \right)\left( {{s^2}} \right) \\
$
Now it is given that $s = p + q + r$, so above equation becomes,
$
\therefore \left( {s + s} \right)\left( {{s^2}} \right) \\
= 2s\left( {{s^2}} \right) = 2{s^3} \\
$
Hence, option (b) is correct.
Note: In such types of questions solve the determinant without opening the determinant if we direct open the determinant it will lead us to a very complex situation that will not help us so, first simplify the determinant using determinant rules as above, then expand the determinant as above after this substitute the given value, we will get the required answer.
Given condition is
$s = p + q + r$
Then we have to find out the value of
$\left| {\begin{array}{*{20}{c}}
{s + r}&p&q \\
r&{s + p}&q \\
r&p&{s + q}
\end{array}} \right|$
Now simplify the determinant using determinant rule and apply,
${c_1} \to {c_1} + {c_2} + {c_3}$, we have
Therefore above determinant becomes
$\left| {\begin{array}{*{20}{c}}
{s + p + q + r}&p&q \\
{s + p + q + r}&{s + p}&q \\
{s + p + q + r}&p&{s + q}
\end{array}} \right|$
Now take $\left( {s + p + q + r} \right)$ outside the determinant from every row we have
$\left( {s + p + q + r} \right)\left| {\begin{array}{*{20}{c}}
1&p&q \\
1&{s + p}&q \\
1&p&{s + q}
\end{array}} \right|$
Now again simplify the determinant using determinant rule and apply,
${R_2} \to {R_2} - {R_1},{\text{ }}{R_3} \to {R_3} - {R_1}$, we have
$\left( {s + p + q + r} \right)\left| {\begin{array}{*{20}{c}}
1&p&q \\
0&s&0 \\
0&0&s
\end{array}} \right|$
Now open the determinant we have
$\left( {s + p + q + r} \right)\left[ {1\left| {\begin{array}{*{20}{c}}
s&0 \\
0&s
\end{array}} \right| - p\left| {\begin{array}{*{20}{c}}
0&0 \\
0&s
\end{array}} \right| + q\left| {\begin{array}{*{20}{c}}
0&s \\
0&0
\end{array}} \right|} \right]$
$
\left( {s + p + q + r} \right)\left[ {1\left( {{s^2} - 0} \right) - p\left( 0 \right) + q\left( 0 \right)} \right] \\
= \left( {s + p + q + r} \right)\left( {{s^2}} \right) \\
$
Now it is given that $s = p + q + r$, so above equation becomes,
$
\therefore \left( {s + s} \right)\left( {{s^2}} \right) \\
= 2s\left( {{s^2}} \right) = 2{s^3} \\
$
Hence, option (b) is correct.
Note: In such types of questions solve the determinant without opening the determinant if we direct open the determinant it will lead us to a very complex situation that will not help us so, first simplify the determinant using determinant rules as above, then expand the determinant as above after this substitute the given value, we will get the required answer.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE