
If projections of a line segment on coordinate axes be \[2,\; - 1,\;2\] respectively, then, its length will be
A. $\dfrac{1}{2}$
B. $2$
C. $3$
D. $4$
Answer
232.5k+ views
Hint: In order to solve this type of question, first we will assume the line segment in vector form. Next, we will take the dot product of the line segment and the direction vector. Then, we will substitute the given values. Now, we will find the length of the line segment by finding the magnitude of the vector formed.
Formula used:
$\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} $
Complete step by step solution:
We are given that,
Projections of a line segment on coordinate axes are \[2,\; - 1,\;2\] ………………..equation $\left( 1 \right)$
Let us assume that the line segment be represented in vector form as
$\overrightarrow a = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k$ ………………..equation $\left( 2 \right)$
Vectors along coordinate axes are $\widehat i,\widehat j,\widehat k$ ………………..equation $\left( 3 \right)$
Taking the dot product of the line segment and the direction vector and equating it with equation $\left( 1 \right)$,
${a_1}\widehat i \times \widehat i = 2$
$ \Rightarrow {a_1} = 2$
Solving it for y-coordinate,
${b_1}\widehat j \times \widehat j = - 1$
$ \Rightarrow {b_1} = - 1$
Solving it for z-coordinate,
${c_1}\widehat k \times \widehat k = 2$
$ \Rightarrow {c_1} = 2$
Substituting these values in equation $\left( 2 \right)$,
$\overrightarrow a = 2\widehat i + \left( { - 1} \right)\widehat j + 2\widehat k$
Finding the length of $\overrightarrow a $,
$\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} $
Substituting the values,
$\left| {\overrightarrow a } \right| = \sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} $
Solving it,
$\left| {\overrightarrow a } \right| = \sqrt 9 $
$\left| {\overrightarrow a } \right| = 3$
Thus, the length of the line segment is 3 units.
$\therefore $ The correct option is (C).
Note: The key concept to solve this type of question is to start with assuming the line segment in vector form. Use $\widehat i \times \widehat i = 1,$ $\widehat j \times \widehat j = 1$ and $\widehat k \times \widehat k = 1$ while taking the dot product and solving it. Also, be sure of the calculations to avoid any unnecessary mistakes in order to get the correct answer.
Formula used:
$\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} $
Complete step by step solution:
We are given that,
Projections of a line segment on coordinate axes are \[2,\; - 1,\;2\] ………………..equation $\left( 1 \right)$
Let us assume that the line segment be represented in vector form as
$\overrightarrow a = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k$ ………………..equation $\left( 2 \right)$
Vectors along coordinate axes are $\widehat i,\widehat j,\widehat k$ ………………..equation $\left( 3 \right)$
Taking the dot product of the line segment and the direction vector and equating it with equation $\left( 1 \right)$,
${a_1}\widehat i \times \widehat i = 2$
$ \Rightarrow {a_1} = 2$
Solving it for y-coordinate,
${b_1}\widehat j \times \widehat j = - 1$
$ \Rightarrow {b_1} = - 1$
Solving it for z-coordinate,
${c_1}\widehat k \times \widehat k = 2$
$ \Rightarrow {c_1} = 2$
Substituting these values in equation $\left( 2 \right)$,
$\overrightarrow a = 2\widehat i + \left( { - 1} \right)\widehat j + 2\widehat k$
Finding the length of $\overrightarrow a $,
$\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} $
Substituting the values,
$\left| {\overrightarrow a } \right| = \sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} $
Solving it,
$\left| {\overrightarrow a } \right| = \sqrt 9 $
$\left| {\overrightarrow a } \right| = 3$
Thus, the length of the line segment is 3 units.
$\therefore $ The correct option is (C).
Note: The key concept to solve this type of question is to start with assuming the line segment in vector form. Use $\widehat i \times \widehat i = 1,$ $\widehat j \times \widehat j = 1$ and $\widehat k \times \widehat k = 1$ while taking the dot product and solving it. Also, be sure of the calculations to avoid any unnecessary mistakes in order to get the correct answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

