# If $P(A)=0.4,P(B)=0.8,P\left( \dfrac{B}{A} \right)=0.6$ . Find $P\left( \dfrac{A}{B} \right)$ .

Last updated date: 26th Mar 2023

•

Total views: 308.4k

•

Views today: 2.85k

Answer

Verified

308.4k+ views

Hint: This question is based on conditional probability . We have to find the probability of occurrence of event \[A\] with a condition that event $B$ has already occurred.

Before we proceed with the solution , we must know the concept of conditional probability.

When the probability of happening of one event is affected by the happening of another, then the two events are known as dependent events.

For example : There are $2$ black cards and $5$ red cards in a pile. The probability of picking a red card is given as $\dfrac{5}{7}$ . But , after removing the red card , now the probability of picking a red or a black card changes . The probability of picking a red card becomes $\dfrac{4}{6}=\dfrac{2}{3}$ and the probability of picking a black card becomes $\dfrac{2}{6}=\dfrac{1}{3}$ .

Now , if $A$ and \[B\] are two dependent events , then the probability of happening of $A$ given that \[B\] has already happened is given by $P\left( \dfrac{A}{B} \right)=\dfrac{P(A\cap B)}{P(B)}$ , where $P(B)$ is the probability of happening of event \[B\] and $P(A\cap B)$ is the probability of happening of events $A$ and \[B\] simultaneously.

Now , coming to the question , we are given probability of happening of event $A$ is equal to $0.4$ , the probability of happening of event $B$ is equal to $0.8$ and the probability of happening of the event $B$ given that $A$ has happened is $0.6$ .

Now ,from the information that the probability of happening of the event $B$ given that $A$ has happened is $0.6$, we can write $\dfrac{P(A\cap B)}{P(A)}=0.6$.

We know $P(A)=0.4$.

So , $\dfrac{P(A\cap B)}{0.4}=0.6$.

$\Rightarrow P(A\cap B)=0.6\times 0.4=0.24$.

Now , we have to find the probability of happening of the event $A$ given that event $B$ has already happened , i.e. we have to find the value of $P\left( \dfrac{A}{B} \right)$.

We know , $P\left( \dfrac{A}{B} \right)=\dfrac{P(A\cap B)}{P(B)}$ .

So , $P\left( \dfrac{A}{B} \right)=\dfrac{0.24}{0.8}=0.3$.

Hence , the value of $P\left( \dfrac{A}{B} \right)$ is equal to $0.3$.

Note: Students generally get confused between $P\left( \dfrac{A}{B} \right)$ and $P\left( \dfrac{B}{A} \right)$. Both are not the same . $P\left( \dfrac{A}{B} \right)$ gives the probability of happening of event $A$ given that event $B$ has already happened , whereas $P\left( \dfrac{B}{A} \right)$ gives the probability of happening of event $B$ given that event $A$ has already happened.

Before we proceed with the solution , we must know the concept of conditional probability.

When the probability of happening of one event is affected by the happening of another, then the two events are known as dependent events.

For example : There are $2$ black cards and $5$ red cards in a pile. The probability of picking a red card is given as $\dfrac{5}{7}$ . But , after removing the red card , now the probability of picking a red or a black card changes . The probability of picking a red card becomes $\dfrac{4}{6}=\dfrac{2}{3}$ and the probability of picking a black card becomes $\dfrac{2}{6}=\dfrac{1}{3}$ .

Now , if $A$ and \[B\] are two dependent events , then the probability of happening of $A$ given that \[B\] has already happened is given by $P\left( \dfrac{A}{B} \right)=\dfrac{P(A\cap B)}{P(B)}$ , where $P(B)$ is the probability of happening of event \[B\] and $P(A\cap B)$ is the probability of happening of events $A$ and \[B\] simultaneously.

Now , coming to the question , we are given probability of happening of event $A$ is equal to $0.4$ , the probability of happening of event $B$ is equal to $0.8$ and the probability of happening of the event $B$ given that $A$ has happened is $0.6$ .

Now ,from the information that the probability of happening of the event $B$ given that $A$ has happened is $0.6$, we can write $\dfrac{P(A\cap B)}{P(A)}=0.6$.

We know $P(A)=0.4$.

So , $\dfrac{P(A\cap B)}{0.4}=0.6$.

$\Rightarrow P(A\cap B)=0.6\times 0.4=0.24$.

Now , we have to find the probability of happening of the event $A$ given that event $B$ has already happened , i.e. we have to find the value of $P\left( \dfrac{A}{B} \right)$.

We know , $P\left( \dfrac{A}{B} \right)=\dfrac{P(A\cap B)}{P(B)}$ .

So , $P\left( \dfrac{A}{B} \right)=\dfrac{0.24}{0.8}=0.3$.

Hence , the value of $P\left( \dfrac{A}{B} \right)$ is equal to $0.3$.

Note: Students generally get confused between $P\left( \dfrac{A}{B} \right)$ and $P\left( \dfrac{B}{A} \right)$. Both are not the same . $P\left( \dfrac{A}{B} \right)$ gives the probability of happening of event $A$ given that event $B$ has already happened , whereas $P\left( \dfrac{B}{A} \right)$ gives the probability of happening of event $B$ given that event $A$ has already happened.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?