
If $P(A) = 0.8,P(B) = 0.5$ and$P\left( {B|A} \right) = 0.4$, find
(i)$P(A \cap B)$
(ii)$P(A|B)$
(iii)$P(A \cup B)$
Answer
624.3k+ views
Hint:- As we know that $P\left( {B|A} \right) = \dfrac{{P(A \cap B)}}{{P(A)}}$
It is given that $P(A) = 0.8,P(B) = 0.5$ and $P\left( {B|A} \right) = 0.4$
As we know that $P\left( {B|A} \right) = \dfrac{{P(A \cap B)}}{{P(A)}}$
For (i) $P(A \cap B)$
$P\left( {B|A} \right) = 0.4$
$P\left( {B|A} \right) = \dfrac{{P(A \cap B)}}{{P(A)}} = 0.4$ and in question it is given that $P(A) = 0.8$
$ \Rightarrow \dfrac{{P(A \cap B)}}{{0.8}} = 0.4$
$\therefore P(A \cap B) = 0.4 \times 0.8 = 0.32$
For (ii) $P(A|B)$
$P\left( {A|B} \right) = \dfrac{{P(A \cap B)}}{{P(B)}}$ and in question it is given that $P(B) = 0.5$and from above solution we get
$P(A \cap B) = 0.32$
$ \Rightarrow P\left( {A|B} \right) = \dfrac{{0.32}}{{0.5}} = 0.64$
For (iii) $P(A \cup B)$
As we know $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$ \Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$ \Rightarrow P(A \cup B) = 0.8 + 0.5 - 0.64$ all the values are given above.
$\therefore P(A \cup B) = 0.66$
Note:- This is a simple formula based question . You have to always keep in mind the basic formula by applying this hint you can easily achieve to the answer.
It is given that $P(A) = 0.8,P(B) = 0.5$ and $P\left( {B|A} \right) = 0.4$
As we know that $P\left( {B|A} \right) = \dfrac{{P(A \cap B)}}{{P(A)}}$
For (i) $P(A \cap B)$
$P\left( {B|A} \right) = 0.4$
$P\left( {B|A} \right) = \dfrac{{P(A \cap B)}}{{P(A)}} = 0.4$ and in question it is given that $P(A) = 0.8$
$ \Rightarrow \dfrac{{P(A \cap B)}}{{0.8}} = 0.4$
$\therefore P(A \cap B) = 0.4 \times 0.8 = 0.32$
For (ii) $P(A|B)$
$P\left( {A|B} \right) = \dfrac{{P(A \cap B)}}{{P(B)}}$ and in question it is given that $P(B) = 0.5$and from above solution we get
$P(A \cap B) = 0.32$
$ \Rightarrow P\left( {A|B} \right) = \dfrac{{0.32}}{{0.5}} = 0.64$
For (iii) $P(A \cup B)$
As we know $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$ \Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$
$ \Rightarrow P(A \cup B) = 0.8 + 0.5 - 0.64$ all the values are given above.
$\therefore P(A \cup B) = 0.66$
Note:- This is a simple formula based question . You have to always keep in mind the basic formula by applying this hint you can easily achieve to the answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

