Answer
Verified
455.1k+ views
Hint: In this question we have to find the magnitude of the given vector using the given condition using unit vectors and angle. For that first we are going to find the unit vector and dot product value and then using a given angle we can find the required cross product value of the given vector.
Complete step-by-step answer:
From the question, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] are unit vector
Then the magnitude value of unit vector is $1$
$\therefore \left| {\overrightarrow a } \right| = 1$, $\left| {\overrightarrow b } \right| = 1$,$\left| {\overrightarrow c } \right| = 1$
We know that if the dot product of two vector is 0 then the two vectors are said to be perpendicular,
\[\therefore \overrightarrow a .\overrightarrow b = 0\] then \[\overrightarrow a \] is perpendicular to \[\overrightarrow b \]
\[\therefore \overrightarrow a .\overrightarrow c = 0\] then \[\overrightarrow a \] is perpendicular to \[\overrightarrow c \]
So, \[\overrightarrow a \] is perpendicular to both \[\overrightarrow b \] and \[\overrightarrow c \] then \[\overrightarrow b \] and \[\overrightarrow c \] are parallel, then we obtain that \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \].
That is, \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \]
Thus, we obtain \[\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \left. {\overrightarrow c } \right|} \right.\]
Now take \[a \] common, we get
\[ \Rightarrow \left| {\overrightarrow a \times (\overrightarrow b - \left. {\overrightarrow c )} \right|} \right. - - - - - - - - - - - (1)\]
We know that if \[\overrightarrow b \] and \[\overrightarrow c \] are parallel, then
\[ \Rightarrow \overrightarrow b = \lambda \overrightarrow c \]
Now substitute \[\overrightarrow b \] value in equation (1), we get
\[ \Rightarrow \left| {\overrightarrow a \times (\lambda \overrightarrow c - \left. {\overrightarrow c )} \right|} \right.\]
Now taking \[\overrightarrow c \] common, we get
\[ \Rightarrow \left| {\overrightarrow a \times (\lambda - \left. {1)\overrightarrow c } \right|} \right.\]
We can separate \[{\text{(}}\lambda {\text{ - 1)}}\] from the modulus, we get
\[ \Rightarrow {\text{(}}\lambda {\text{ - 1)}}\left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. - - - - - - - - - - - - (2)\]
We know that,
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \theta - - - - - - - - - - (3)\]
Given that the angle between \[\overrightarrow a \] and \[\overrightarrow c \] is \[\dfrac{\pi }{3}\] because \[\overrightarrow a \] and \[\overrightarrow c \] is perpendicular and substitute the angle in equation (3), we get
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \dfrac{\pi }{2}\]
Since $\left| {\overrightarrow a } \right| = 1$, $\left| {\overrightarrow c } \right| = 1$, then
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = 1 \cdot 1.\sin {90^ \circ }\]
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = \sin {60^ \circ } - - - - - - - - - - (4)\]
We know that, \[\sin {90^ \circ } = 1\] substitute \[\sin {60^ \circ }\] value in equation (4), we get
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = 1 - - - - - - - - - - (5)\]
Now, Substitute equation (5) in (2)
\[ \Rightarrow \left( {\lambda {\text{ - 1}}} \right)\left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right.\]
\[ \Rightarrow \left( {\lambda - 1} \right) \cdot 1\]
\[ \Rightarrow \left( {\lambda - 1} \right) - - - - - - - - - - - - - - - (6)\]
Similarly, now take \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \],
We know that if \[\overrightarrow b \] and \[\overrightarrow c \] are parallel, then
\[ \Rightarrow \overrightarrow b = \lambda \overrightarrow c \]
Similarly \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \]
\[ \Rightarrow \overrightarrow a = \lambda (\overrightarrow b \times \overrightarrow c )\]
\[ \Rightarrow \left| {\overrightarrow a } \right| = \lambda \left| {(\overrightarrow b \times \overrightarrow c )} \right|\]
We know that \[\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c \] are unit vectors
\[ \Rightarrow \left| {\overrightarrow a } \right| = \lambda \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {60^ \circ }\]
Given that $\left| {\overrightarrow a } \right| = 1$, $\left| {\overrightarrow b } \right| = 1$, $\left| {\overrightarrow c } \right| = 1$and \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
By substituting, we get
\[ \Rightarrow 1 = \lambda \cdot 1 \cdot 1 \cdot \dfrac{{\sqrt 3 }}{2}\]
Now we get \[\lambda \] value,
\[ \Rightarrow \lambda = \dfrac{2}{{\sqrt 3 }}\]
Now substitute \[\lambda \] value in equation (6), we get
\[ \Rightarrow \left( {\lambda - 1} \right) - - - - - - - - - - - - - - - (6)\]
\[ \Rightarrow \left( {\dfrac{2}{{\sqrt 3 }} - 1} \right)\]
Multiply and divide by \[\sqrt 3 \] we get,
\[ \Rightarrow \left( {\dfrac{2}{{\sqrt 3 }} - \dfrac{{\sqrt 3 }}{{\sqrt 3 }}} \right)\]
Denominator for the both terms are equal, we get,
\[ \Rightarrow \left( {\dfrac{{2 - \sqrt 3 }}{{\sqrt 3 }}} \right)\]
$\therefore $ Thus the value \[\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \left. {\overrightarrow c } \right|} \right.\] is \[\dfrac{{2 - \sqrt 3 }}{{\sqrt 3 }}\]
Note: This kind of problem has to be derived in a substitution way because the question gives ideas to solve in the manner of dot product as well as cross product. The basic vector calculation and algebraic calculation take place. And also we need to know some trigonometric ratio values and fraction addition.
Complete step-by-step answer:
From the question, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] are unit vector
Then the magnitude value of unit vector is $1$
$\therefore \left| {\overrightarrow a } \right| = 1$, $\left| {\overrightarrow b } \right| = 1$,$\left| {\overrightarrow c } \right| = 1$
We know that if the dot product of two vector is 0 then the two vectors are said to be perpendicular,
\[\therefore \overrightarrow a .\overrightarrow b = 0\] then \[\overrightarrow a \] is perpendicular to \[\overrightarrow b \]
\[\therefore \overrightarrow a .\overrightarrow c = 0\] then \[\overrightarrow a \] is perpendicular to \[\overrightarrow c \]
So, \[\overrightarrow a \] is perpendicular to both \[\overrightarrow b \] and \[\overrightarrow c \] then \[\overrightarrow b \] and \[\overrightarrow c \] are parallel, then we obtain that \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \].
That is, \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \]
Thus, we obtain \[\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \left. {\overrightarrow c } \right|} \right.\]
Now take \[a \] common, we get
\[ \Rightarrow \left| {\overrightarrow a \times (\overrightarrow b - \left. {\overrightarrow c )} \right|} \right. - - - - - - - - - - - (1)\]
We know that if \[\overrightarrow b \] and \[\overrightarrow c \] are parallel, then
\[ \Rightarrow \overrightarrow b = \lambda \overrightarrow c \]
Now substitute \[\overrightarrow b \] value in equation (1), we get
\[ \Rightarrow \left| {\overrightarrow a \times (\lambda \overrightarrow c - \left. {\overrightarrow c )} \right|} \right.\]
Now taking \[\overrightarrow c \] common, we get
\[ \Rightarrow \left| {\overrightarrow a \times (\lambda - \left. {1)\overrightarrow c } \right|} \right.\]
We can separate \[{\text{(}}\lambda {\text{ - 1)}}\] from the modulus, we get
\[ \Rightarrow {\text{(}}\lambda {\text{ - 1)}}\left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. - - - - - - - - - - - - (2)\]
We know that,
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \theta - - - - - - - - - - (3)\]
Given that the angle between \[\overrightarrow a \] and \[\overrightarrow c \] is \[\dfrac{\pi }{3}\] because \[\overrightarrow a \] and \[\overrightarrow c \] is perpendicular and substitute the angle in equation (3), we get
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = \left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\sin \dfrac{\pi }{2}\]
Since $\left| {\overrightarrow a } \right| = 1$, $\left| {\overrightarrow c } \right| = 1$, then
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = 1 \cdot 1.\sin {90^ \circ }\]
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = \sin {60^ \circ } - - - - - - - - - - (4)\]
We know that, \[\sin {90^ \circ } = 1\] substitute \[\sin {60^ \circ }\] value in equation (4), we get
\[ \Rightarrow \left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right. = 1 - - - - - - - - - - (5)\]
Now, Substitute equation (5) in (2)
\[ \Rightarrow \left( {\lambda {\text{ - 1}}} \right)\left| {\overrightarrow a \times \left. {\overrightarrow c } \right|} \right.\]
\[ \Rightarrow \left( {\lambda - 1} \right) \cdot 1\]
\[ \Rightarrow \left( {\lambda - 1} \right) - - - - - - - - - - - - - - - (6)\]
Similarly, now take \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \],
We know that if \[\overrightarrow b \] and \[\overrightarrow c \] are parallel, then
\[ \Rightarrow \overrightarrow b = \lambda \overrightarrow c \]
Similarly \[\overrightarrow a \] is parallel to \[\overrightarrow b \times \overrightarrow c \]
\[ \Rightarrow \overrightarrow a = \lambda (\overrightarrow b \times \overrightarrow c )\]
\[ \Rightarrow \left| {\overrightarrow a } \right| = \lambda \left| {(\overrightarrow b \times \overrightarrow c )} \right|\]
We know that \[\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c \] are unit vectors
\[ \Rightarrow \left| {\overrightarrow a } \right| = \lambda \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {60^ \circ }\]
Given that $\left| {\overrightarrow a } \right| = 1$, $\left| {\overrightarrow b } \right| = 1$, $\left| {\overrightarrow c } \right| = 1$and \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
By substituting, we get
\[ \Rightarrow 1 = \lambda \cdot 1 \cdot 1 \cdot \dfrac{{\sqrt 3 }}{2}\]
Now we get \[\lambda \] value,
\[ \Rightarrow \lambda = \dfrac{2}{{\sqrt 3 }}\]
Now substitute \[\lambda \] value in equation (6), we get
\[ \Rightarrow \left( {\lambda - 1} \right) - - - - - - - - - - - - - - - (6)\]
\[ \Rightarrow \left( {\dfrac{2}{{\sqrt 3 }} - 1} \right)\]
Multiply and divide by \[\sqrt 3 \] we get,
\[ \Rightarrow \left( {\dfrac{2}{{\sqrt 3 }} - \dfrac{{\sqrt 3 }}{{\sqrt 3 }}} \right)\]
Denominator for the both terms are equal, we get,
\[ \Rightarrow \left( {\dfrac{{2 - \sqrt 3 }}{{\sqrt 3 }}} \right)\]
$\therefore $ Thus the value \[\left| {\overrightarrow a \times \overrightarrow b - \overrightarrow a \times \left. {\overrightarrow c } \right|} \right.\] is \[\dfrac{{2 - \sqrt 3 }}{{\sqrt 3 }}\]
Note: This kind of problem has to be derived in a substitution way because the question gives ideas to solve in the manner of dot product as well as cross product. The basic vector calculation and algebraic calculation take place. And also we need to know some trigonometric ratio values and fraction addition.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE