
If one were to apply Bohr model to a particle “m” and charge “q” moving in a plane under the influence of the magnetic field “B”, the energy of the charged particle in the nth level will be:
(A) $ n\left( \dfrac{hqB}{4\pi m} \right) $
(B) $ n\left( \dfrac{hqB}{8\pi m} \right) $
(C) $ n\left( \dfrac{hqB}{\pi m} \right) $
(D) $ n\left( \dfrac{hqB}{2\pi m} \right) $
Answer
551.4k+ views
Hint: Here we will apply the Bohr quantization condition. The value of $ vr $ can be calculated from here.
The magnetic Lorentz force provides the necessary centripetal force. From here, value of $ \dfrac{v}{r} $ can be calculated
By multiplying these two values found, we can find the value of $ {{v}^{2}} $ and hence kinetic energy using the formula $ \dfrac{1}{2}m{{v}^{2}} $.
Complete step by step solution
Bohr’s quantization condition states that angular momentum of an electron is an integral multiple of $ \dfrac{h}{2\pi } $
$ \text{L=}\dfrac{n\text{ }h}{2\pi } $
As $ \alpha =mvr $ , so
$ mvr=\dfrac{nh}{2\pi } $
$ vr=\dfrac{nh}{2\pi m} $ …… …… …… (1)
Now, the magnetic Lorentz force provides the necessary centripetal force.
So, $ \dfrac{m{{v}^{2}}}{r}=qvB $
On rearranging, we get
$ \dfrac{v}{r}=\dfrac{qB}{m} $ …… …… …… (2)
On multiplying equations (1) and (2) we get
$ vr\times \dfrac{v}{r}=\left( \dfrac{nh}{2\pi m} \right)\times \left( \dfrac{qB}{m} \right) $
$ {{v}^{2}}=\dfrac{n\text{ }h\ q\text{ }B}{2\pi \text{ }{{m}^{2}}} $
Now energy of the charged particle is given by:
K.E $ =\dfrac{1}{2}m{{v}^{2}} $
$ =\dfrac{1}{2}m\left( \dfrac{n\text{ }h\text{ }q\text{ }B}{2\pi {{m}^{2}}} \right) $
$ \text{E=n}\left( \dfrac{hqB}{4\pi m} \right) $.
Correct option is (A).
Note
Lorentz force is the force exerted on a charged particle q moving with velocity v through an electric field E and moving magnetic field B.
The entire electromagnetic force F on the charged particle is called the Lorentz force and is given by
$ \text{F=}qE+qv\times B $
The first term is contributed by the electric field. The second term is the magnetic field. The second term is the magnetic field and has a direction perpendicular to both the velocity and the magnetic field.
The magnetic Lorentz force provides the necessary centripetal force. From here, value of $ \dfrac{v}{r} $ can be calculated
By multiplying these two values found, we can find the value of $ {{v}^{2}} $ and hence kinetic energy using the formula $ \dfrac{1}{2}m{{v}^{2}} $.
Complete step by step solution
Bohr’s quantization condition states that angular momentum of an electron is an integral multiple of $ \dfrac{h}{2\pi } $
$ \text{L=}\dfrac{n\text{ }h}{2\pi } $
As $ \alpha =mvr $ , so
$ mvr=\dfrac{nh}{2\pi } $
$ vr=\dfrac{nh}{2\pi m} $ …… …… …… (1)
Now, the magnetic Lorentz force provides the necessary centripetal force.
So, $ \dfrac{m{{v}^{2}}}{r}=qvB $
On rearranging, we get
$ \dfrac{v}{r}=\dfrac{qB}{m} $ …… …… …… (2)
On multiplying equations (1) and (2) we get
$ vr\times \dfrac{v}{r}=\left( \dfrac{nh}{2\pi m} \right)\times \left( \dfrac{qB}{m} \right) $
$ {{v}^{2}}=\dfrac{n\text{ }h\ q\text{ }B}{2\pi \text{ }{{m}^{2}}} $
Now energy of the charged particle is given by:
K.E $ =\dfrac{1}{2}m{{v}^{2}} $
$ =\dfrac{1}{2}m\left( \dfrac{n\text{ }h\text{ }q\text{ }B}{2\pi {{m}^{2}}} \right) $
$ \text{E=n}\left( \dfrac{hqB}{4\pi m} \right) $.
Correct option is (A).
Note
Lorentz force is the force exerted on a charged particle q moving with velocity v through an electric field E and moving magnetic field B.
The entire electromagnetic force F on the charged particle is called the Lorentz force and is given by
$ \text{F=}qE+qv\times B $
The first term is contributed by the electric field. The second term is the magnetic field. The second term is the magnetic field and has a direction perpendicular to both the velocity and the magnetic field.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

